Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 146 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 37 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bisecting K-Means in RAG for Enhancing Question-Answering Tasks Performance in Telecommunications (2502.20188v1)

Published 27 Feb 2025 in cs.IR

Abstract: Question-answering tasks in the telecom domain are still reasonably unexplored in the literature, primarily due to the field's rapid changes and evolving standards. This work presents a novel Retrieval-Augmented Generation framework explicitly designed for the telecommunication domain, focusing on datasets composed of 3GPP documents. The framework introduces the use of the Bisecting K-Means clustering technique to organize the embedding vectors by contents, facilitating more efficient information retrieval. By leveraging this clustering technique, the system pre-selects a subset of clusters that are most similar to the user's query, enhancing the relevance of the retrieved information. Aiming for models with lower computational cost for inference, the framework was tested using Small LLMs, demonstrating improved performance with an accuracy of 66.12% on phi-2 and 72.13% on phi-3 fine-tuned models, and reduced training time.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.