Weighted Approximate Quantum Natural Gradient for Variational Quantum Eigensolver (2504.04932v1)
Abstract: Variational quantum eigensolver (VQE) is one of the most prominent algorithms using near-term quantum devices, designed to find the ground state of a Hamiltonian. In VQE, a classical optimizer iteratively updates the parameters in the quantum circuit. Among various optimization methods, quantum natural gradient descent (QNG) stands out as a promising optimization approach for VQE. However, standard QNG only leverages the quantum Fisher information of the entire system and treats each subsystem equally in the optimization process, without accounting for the different weights and contributions of each subsystem corresponding to each observable. To address this limitation, we propose a Weighted Approximate Quantum Natural Gradient (WA-QNG) method tailored for $k$-local Hamiltonians. In this paper, we theoretically analyze the potential advantages of WA-QNG compared to QNG from three distinct perspectives and reveal its connection with the Gauss-Newton method. We also show it outperforms standard quantum natural gradient descent in the numerical experiments for seeking the ground state of the Hamiltonian.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.