Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Residual-based Chebyshev filtered subspace iteration for sparse Hermitian eigenvalue problems tolerant to inexact matrix-vector products (2503.22652v3)

Published 28 Mar 2025 in physics.comp-ph, cs.NA, and math.NA

Abstract: Chebyshev Filtered Subspace Iteration (ChFSI) has been widely adopted for computing a small subset of extreme eigenvalues in large sparse matrices. This work introduces a residual-based reformulation of ChFSI, referred to as R-ChFSI, designed to accommodate inexact matrix-vector products while maintaining robust convergence properties. By reformulating the traditional Chebyshev recurrence to operate on residuals rather than eigenvector estimates, the R-ChFSI approach effectively suppresses the errors made in matrix-vector products, improving the convergence behaviour for both standard and generalized eigenproblems. This ability of R-ChFSI to be tolerant to inexact matrix-vector products allows one to incorporate approximate inverses for large-scale generalized eigenproblems, making the method particularly attractive where exact matrix factorizations or iterative methods become computationally expensive for evaluating inverses. It also allows us to compute the matrix-vector products in lower-precision arithmetic allowing us to leverage modern hardware accelerators. Through extensive benchmarking, we demonstrate that R-ChFSI achieves desired residual tolerances while leveraging low-precision arithmetic. For problems with millions of degrees of freedom and thousands of eigenvalues, R-ChFSI attains final residual norms in the range of 10${-12}$ to 10${-14}$, even with FP32 and TF32 arithmetic, significantly outperforming standard ChFSI in similar settings. In generalized eigenproblems, where approximate inverses are used, R-ChFSI achieves residual tolerances up to ten orders of magnitude lower, demonstrating its robustness to approximation errors. Finally, R-ChFSI provides a scalable and computationally efficient alternative for solving large-scale eigenproblems in high-performance computing environments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: