Efficient parameter inference in networked dynamical systems via steady states: A surrogate objective function approach integrating mean-field and nonlinear least squares (2503.18335v1)
Abstract: In networked dynamical systems, inferring governing parameters is crucial for predicting nodal dynamics, such as gene expression levels, species abundance, or population density. While many parameter estimation techniques rely on time-series data, particularly systems that converge over extreme time ranges, only noisy steady-state data is available, requiring a new approach to infer dynamical parameters from noisy observations of steady states. However, the traditional optimization process is computationally demanding, requiring repeated simulation of coupled ordinary differential equations (ODEs). To overcome these limitations, we introduce a surrogate objective function that leverages decoupled equations to compute steady states, significantly reducing computational complexity. Furthermore, by optimizing the surrogate objective function, we obtain steady states that more accurately approximate the ground truth than noisy observations and predict future equilibria when topology changes. We empirically demonstrate the effectiveness of the proposed method across ecological, gene regulatory, and epidemic networks. Our approach provides an efficient and effective way to estimate parameters from steady-state data and has the potential to improve predictions in networked dynamical systems.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.