Papers
Topics
Authors
Recent
2000 character limit reached

Exposure Bias Reduction for Enhancing Diffusion Transformer Feature Caching (2503.07120v1)

Published 10 Mar 2025 in cs.CV and cs.LG

Abstract: Diffusion Transformer (DiT) has exhibited impressive generation capabilities but faces great challenges due to its high computational complexity. To address this problem, various methods, notably feature caching, have been introduced. However, these approaches focus on aligning non-cache diffusion without analyzing the impact of caching on the generation of intermediate processes. So the lack of exploration provides us with room for analysis and improvement. In this paper, we analyze the impact of caching on the SNR of the diffusion process and discern that feature caching intensifies the denoising procedure, and we further identify this as a more severe exposure bias issue. Drawing on this insight, we introduce EB-Cache, a joint cache strategy that aligns the Non-exposure bias (which gives us a higher performance ceiling) diffusion process. Our approach incorporates a comprehensive understanding of caching mechanisms and offers a novel perspective on leveraging caches to expedite diffusion processes. Empirical results indicate that EB-Cache optimizes model performance while concurrently facilitating acceleration. Specifically, in the 50-step generation process, EB-Cache achieves 1.49$\times$ acceleration with 0.63 FID reduction from 3.69, surpassing prior acceleration methods. Code will be available at \href{https://github.com/aSleepyTree/EB-Cache}{https://github.com/aSleepyTree/EB-Cache}.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com