Papers
Topics
Authors
Recent
2000 character limit reached

BICompFL: Stochastic Federated Learning with Bi-Directional Compression (2502.00206v1)

Published 31 Jan 2025 in cs.LG, cs.DC, cs.IT, math.IT, and stat.ML

Abstract: We address the prominent communication bottleneck in federated learning (FL). We specifically consider stochastic FL, in which models or compressed model updates are specified by distributions rather than deterministic parameters. Stochastic FL offers a principled approach to compression, and has been shown to reduce the communication load under perfect downlink transmission from the federator to the clients. However, in practice, both the uplink and downlink communications are constrained. We show that bi-directional compression for stochastic FL has inherent challenges, which we address by introducing BICompFL. Our BICompFL is experimentally shown to reduce the communication cost by an order of magnitude compared to multiple benchmarks, while maintaining state-of-the-art accuracies. Theoretically, we study the communication cost of BICompFL through a new analysis of an importance-sampling based technique, which exposes the interplay between uplink and downlink communication costs.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.