Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
127 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Quantum-Inspired Fidelity-based Divergence (2501.19307v1)

Published 31 Jan 2025 in cs.IT and math.IT

Abstract: Kullback--Leibler (KL) divergence is a fundamental measure of the dissimilarity between two probability distributions, but it can become unstable in high-dimensional settings due to its sensitivity to mismatches in distributional support. To address robustness limitations, we propose a novel Quantum-Inspired Fidelity-based Divergence (QIF), leveraging quantum information principles yet efficiently computable on classical hardware. Compared to KL divergence, QIF demonstrates improved numerical stability under partial or near-disjoint support conditions, thereby reducing the need for extensive regularization in specific scenarios. Moreover, QIF admits well-defined theoretical bounds and continuous similarity measures. Building on this, we introduce a novel regularization method, QR-Drop, which utilizes QIF to improve generalization in machine learning models. Empirical results show that QR-Drop effectively mitigates overfitting and outperforms state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.