Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bird Vocalization Embedding Extraction Using Self-Supervised Disentangled Representation Learning (2412.20146v1)

Published 28 Dec 2024 in eess.AS, cs.SD, and eess.SP

Abstract: This paper addresses the extraction of the bird vocalization embedding from the whole song level using disentangled representation learning (DRL). Bird vocalization embeddings are necessary for large-scale bioacoustic tasks, and self-supervised methods such as Variational Autoencoder (VAE) have shown their performance in extracting such low-dimensional embeddings from vocalization segments on the note or syllable level. To extend the processing level to the entire song instead of cutting into segments, this paper regards each vocalization as the generalized and discriminative part and uses two encoders to learn these two parts. The proposed method is evaluated on the Great Tits dataset according to the clustering performance, and the results outperform the compared pre-trained models and vanilla VAE. Finally, this paper analyzes the informative part of the embedding, further compresses its dimension, and explains the disentangled performance of bird vocalizations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.