GRS: Generating Robotic Simulation Tasks from Real-World Images (2410.15536v2)
Abstract: We introduce GRS (Generating Robotic Simulation tasks), a system addressing real-to-sim for robotic simulations. GRS creates digital twin simulations from single RGB-D observations with solvable tasks for virtual agent training. Using vision-LLMs (VLMs), our pipeline operates in three stages: 1) scene comprehension with SAM2 for segmentation and object description, 2) matching objects with simulation-ready assets, and 3) generating appropriate tasks. We ensure simulation-task alignment through generated test suites and introduce a router that iteratively refines both simulation and test code. Experiments demonstrate our system's effectiveness in object correspondence and task environment generation through our novel router mechanism.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.