Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

On the complexity of the upgrading version of the maximal covering location problem (2409.11900v1)

Published 18 Sep 2024 in cs.DS and math.OC

Abstract: In this article, we study the complexity of the upgrading version of the maximal covering location problem with edge length modifications on networks. This problem is NP-hard on general networks. However, in some particular cases, we prove that this problem is solvable in polynomial time. The cases of star and path networks combined with different assumptions for the model parameters are analysed. In particular, we obtain that the problem on star networks is solvable in O(nlogn) time for uniform weights and NP-hard for non-uniform weights. On paths, the single facility problem is solvable in O(n3) time, while the p-facility problem is NP-hard even with uniform costs and upper bounds (maximal upgrading per edge), as well as, integer parameter values. Furthermore, a pseudo-polynomial algorithm is developed for the single facility problem on trees with integer parameters.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.