Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Complexity of Packing Edge-Disjoint Paths (1910.00440v1)

Published 1 Oct 2019 in cs.CC and cs.DS

Abstract: We introduce and study the complexity of Path Packing. Given a graph $G$ and a list of paths, the task is to embed the paths edge-disjoint in $G$. This generalizes the well known Hamiltonian-Path problem. Since Hamiltonian Path is efficiently solvable for graphs of small treewidth, we study how this result translates to the much more general Path Packing. On the positive side, we give an FPT-algorithm on trees for the number of paths as parameter. Further, we give an XP-algorithm with the combined parameters maximal degree, number of connected components and number of nodes of degree at least three. Surprisingly the latter is an almost tight result by runtime and parameterization. We show an ETH lower bound almost matching our runtime. Moreover, if two of the three values are constant and one is unbounded the problem becomes NP-hard. Further, we study restrictions to the given list of paths. On the positive side, we present an FPT-algorithm parameterized by the sum of the lengths of the paths. Packing paths of length two is polynomial time solvable, while packing paths of length three is NP-hard. Finally, even the spacial case EPC where the paths have to cover every edge in $G$ exactly once is already NP-hard for two paths on 4-regular graphs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube