Papers
Topics
Authors
Recent
2000 character limit reached

An Optimal Algorithm for the Indirect Covering Subtree Problem

Published 2 Feb 2010 in cs.DS and cs.DM | (1002.0580v1)

Abstract: We consider the indirect covering subtree problem (Kim et al., 1996). The input is an edge weighted tree graph along with customers located at the nodes. Each customer is associated with a radius and a penalty. The goal is to locate a tree-shaped facility such that the sum of setup and penalty cost is minimized. The setup cost equals the sum of edge lengths taken by the facility and the penalty cost is the sum of penalties of all customers whose distance to the facility exceeds their radius. The indirect covering subtree problem generalizes the single maximum coverage location problem on trees where the facility is a node rather than a subtree. Indirect covering subtree can be solved in $O(n\log2 n)$ time (Kim et al., 1996). A slightly faster algorithm for single maximum coverage location with a running time of $O(n\log2n/\log\log n)$ has been provided (Spoerhase and Wirth, 2009). We achieve time $O(n\log n)$ for indirect covering subtree thereby providing the fastest known algorithm for both problems. Our result implies also faster algorithms for competitive location problems such as $(1,X)$-medianoid and $(1,p)$-centroid on trees. We complement our result by a lower bound of $\Omega(n\log n)$ for single maximum coverage location and $(1,X)$-medianoid on a real-number RAM model showing that our algorithm is optimal in running time.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.