Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted Upper Edge Cover: Complexity and Approximability (1811.02599v1)

Published 6 Nov 2018 in cs.DS

Abstract: Optimization problems consist of either maximizing or minimizing an objective function. Instead of looking for a maximum solution (resp. minimum solution), one can find a minimum maximal solution (resp. maximum minimal solution). Such "flipping" of the objective function was done for many classical optimization problems. For example, Minimum Vertex Cover becomes Maximum Minimal Vertex Cover, Maximum Independent Set becomes Minimum Maximal Independent Set and so on. In this paper, we propose to study the weighted version of Maximum Minimal Edge Cover called Upper Edge Cover, a problem having application in the genomic sequence alignment. It is well-known that Minimum Edge Cover is polynomial-time solvable and the "flipped" version is NP-hard, but constant approximable. We show that the weighted Upper Edge Cover is much more difficult than Upper Edge Cover because it is not $O(\frac{1}{n{1/2-\varepsilon}})$ approximable, nor $O(\frac{1}{\Delta{1-\varepsilon}})$ in edge-weighted graphs of size $n$ and maximum degree $\Delta$ respectively. Indeed, we give some hardness of approximation results for some special restricted graph classes such as bipartite graphs, split graphs and $k$-trees. We counter-balance these negative results by giving some positive approximation results in specific graph classes.

Citations (9)

Summary

We haven't generated a summary for this paper yet.