Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Research on LLM Acceleration Using the High-Performance RISC-V Processor "Xiangshan" (Nanhu Version) Based on the Open-Source Matrix Instruction Set Extension (Vector Dot Product) (2409.00661v1)

Published 1 Sep 2024 in cs.AR

Abstract: Considering the high-performance and low-power requirements of edge AI, this study designs a specialized instruction set processor for edge AI based on the RISC-V instruction set architecture, addressing practical issues in digital signal processing for edge devices. This design enhances the execution efficiency of edge AI and reduces its energy consumption with limited hardware overhead, meeting the demands for efficient LLM inference computation in edge AI applications. The main contributions of this paper are as follows: For the characteristics of LLMs, custom instructions were extended based on the RISC-V instruction set to perform vector dot product calculations, accelerating the computation of LLMs on dedicated vector dot product acceleration hardware. Based on the open-source high-performance RISC-V processor core XiangShan Nanhu architecture, the vector dot product specialized instruction set processor Nanhu-vdot was implemented, which adds vector dot product calculation units and pipeline processing logic on top of the XiangShan Nanhu.The Nanhu-vdot underwent FPGA hardware testing, achieving over four times the speed of scalar methods in vector dot product computation. Using a hardware-software co-design approach for second-generation Generative Pre-Trained Transformer (GPT-2) model inference, the speed improved by approximately 30% compared to pure software implementation with almost no additional consumption of hardware resources and power consumption.

Summary

We haven't generated a summary for this paper yet.