Papers
Topics
Authors
Recent
2000 character limit reached

Can SAR improve RSVQA performance? (2408.15642v1)

Published 28 Aug 2024 in cs.CV

Abstract: Remote sensing visual question answering (RSVQA) has been involved in several research in recent years, leading to an increase in new methods. RSVQA automatically extracts information from satellite images, so far only optical, and a question to automatically search for the answer in the image and provide it in a textual form. In our research, we study whether Synthetic Aperture Radar (SAR) images can be beneficial to this field. We divide our study into three phases which include classification methods and VQA. In the first one, we explore the classification results of SAR alone and investigate the best method to extract information from SAR data. Then, we study the combination of SAR and optical data. In the last phase, we investigate how SAR images and a combination of different modalities behave in RSVQA compared to a method only using optical images. We conclude that adding the SAR modality leads to improved performances, although further research on using SAR data to automatically answer questions is needed as well as more balanced datasets.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.