Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Local statistical moments to capture Kramers-Moyal coefficients (2408.13555v1)

Published 24 Aug 2024 in stat.ME and physics.data-an

Abstract: This study introduces an innovative local statistical moment approach for estimating Kramers-Moyal coefficients, effectively bridging the gap between nonparametric and parametric methodologies. These coefficients play a crucial role in characterizing stochastic processes. Our proposed approach provides a versatile framework for localized coefficient estimation, combining the flexibility of nonparametric methods with the interpretability of global parametric approaches. We showcase the efficacy of our approach through use cases involving both stationary and non-stationary time series analysis. Additionally, we demonstrate its applicability to real-world complex systems, specifically in the energy conversion process analysis of a wind turbine.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com