Papers
Topics
Authors
Recent
2000 character limit reached

Wormhole restrictions from quantum energy inequalities (2405.05963v2)

Published 9 May 2024 in gr-qc

Abstract: Wormhole solutions, bridges that connect different parts of spacetime, were proposed early in the history of General Relativity. Soon after, it was shown that all wormholes violate classical energy conditions, which are non-negativity constraints on contractions of the stress-energy tensor. Since these conditions are violated by quantum fields, it was believed that wormholes can be constructed in the context of semiclassical gravity. But negative energies in quantum field theory are not without restriction: quantum energy inequalities (QEIs) control renormalized negative energies averaged over a geodesic. Thus, QEIs provide restrictions on the construction of wormholes. This work is a review of the relevant literature, thus focusing on results where QEIs restrict traversable wormholes. Both 'short' and 'long' (without causality violations) wormhole solutions in the context of semiclassical gravity are examined. A new result is presented on constraints on the Maldacena, Milekhin, and Popov 'long' wormhole from the recently derived doubled smeared null energy condition.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (93)
  1. R. Penrose, “Gravitational collapse and space-time singularities,” Phys. Rev. Lett. 14 (1965) 57–59.
  2. S. W. Hawking, “The Occurrence of singularities in cosmology,” Proc. Roy. Soc. Lond. A294 (1966) 511–521.
  3. H. Epstein, V. Glaser, and A. Jaffe, “Nonpositivity of energy density in quantized field theories,” Nuovo Cim. 36 (1965) 1016.
  4. L. H. Ford, “Quantum coherence effects and the second law of thermodynamics,” Proc. Roy. Soc. Lond. A364 (1978) 227–236.
  5. C. J. Fewster and T. A. Roman, “Null energy conditions in quantum field theory,” Phys. Rev. D67 (2003) 044003, arXiv:gr-qc/0209036 [gr-qc]. [Erratum: Phys. Rev.D80,069903(2009)].
  6. N. Graham and K. D. Olum, “Achronal averaged null energy condition,” Phys. Rev. D 76 (2007) 064001, arXiv:0705.3193 [gr-qc].
  7. A ‘short’ wormhole can be modified to act as a time machine as discussed in Sec. V.1.
  8. B. Freivogel and D. Krommydas, “The Smeared Null Energy Condition,” JHEP 12 (2018) 067, arXiv:1807.03808 [hep-th].
  9. J. R. Fliss, B. Freivogel, and E.-A. Kontou, “The double smeared null energy condition,” SciPost Phys. 14 no. 2, (2023) 024, arXiv:2111.05772 [hep-th].
  10. J. Maldacena, A. Milekhin, and F. Popov, “Traversable wormholes in four dimensions,” Class. Quant. Grav. 40 no. 15, (2023) 155016, arXiv:1807.04726 [hep-th].
  11. W. H. Freeman, San Francisco, 1973.
  12. E. Curiel, “A primer on energy conditions,” Einstein Stud. 13 (2017) 43–104, arXiv:1405.0403 [physics.hist-ph].
  13. C. Barcelo and M. Visser, “Twilight for the energy conditions?,” Int. J. Mod. Phys. D 11 (2002) 1553–1560, arXiv:gr-qc/0205066.
  14. P. J. Brown, C. J. Fewster, and E.-A. Kontou, “A singularity theorem for Einstein–Klein–Gordon theory,” Gen. Rel. Grav. 50 no. 10, (2018) 121, arXiv:1803.11094 [gr-qc].
  15. F. A. E. Pirani, “On the physical significance of the Riemann tensor,” Acta Phys. Polon. 15 (1956) 389–405. [Gen. Rel. Grav.41,1215(2009)].
  16. S. W. Hawking, “Black holes in general relativity,” Commun. Math. Phys. 25 (1972) 152–166.
  17. C. Barcelo and M. Visser, “Scalar fields, energy conditions, and traversable wormholes,” Class. Quant. Grav. 17 (2000) 3843–3864, arXiv:gr-qc/0003025.
  18. J. R. Fliss, B. Freivogel, E.-A. Kontou, and D. P. Santos, “Non-minimal coupling, negative null energy, and effective field theory,” arXiv:2309.10848 [hep-th].
  19. I. Khavkine and V. Moretti, “Algebraic QFT in curved spacetime and quasifree Hadamard states: an introduction,” in Advances in algebraic quantum field theory, Math. Phys. Stud., pp. 191–251. Springer, Cham, 2015.
  20. V. Moretti, “On the global Hadamard condition in QFT and the signed squared geodesic distance defined in domains larger than convex normal neighborhoods,” arXiv:2107.04903 [gr-qc].
  21. S. Hollands and R. M. Wald, “Local Wick polynomials and time ordered products of quantum fields in curved space-time,” Commun. Math. Phys. 223 (2001) 289–326, arXiv:gr-qc/0103074 [gr-qc].
  22. S. Hollands and R. M. Wald, “Conservation of the stress tensor in interacting quantum field theory in curved spacetimes,” Rev. Math. Phys. 17 (2005) 227–312, arXiv:gr-qc/0404074 [gr-qc].
  23. Y. Decanini and A. Folacci, “Hadamard renormalization of the stress-energy tensor for a quantized scalar field in a general spacetime of arbitrary dimension,” Phys. Rev. D 78 (2008) 044025, arXiv:gr-qc/0512118.
  24. R. M. Wald, “Trace Anomaly of a Conformally Invariant Quantum Field in Curved Space-Time,” Phys. Rev. D 17 (1978) 1477–1484.
  25. L. H. Ford and T. A. Roman, “Averaged energy conditions and quantum inequalities,” Phys. Rev. D 51 (1995) 4277–4286, arXiv:gr-qc/9410043.
  26. C. J. Fewster and S. P. Eveson, “Bounds on negative energy densities in flat space-time,” Phys. Rev. D 58 (1998) 084010, arXiv:gr-qc/9805024.
  27. C. J. Fewster, “A General worldline quantum inequality,” Class. Quant. Grav. 17 (2000) 1897–1911, arXiv:gr-qc/9910060.
  28. C. J. Fewster and C. J. Smith, “Absolute quantum energy inequalities in curved spacetime,” Annales Henri Poincare 9 (2008) 425–455, arXiv:gr-qc/0702056.
  29. C. J. Fewster and E.-A. Kontou, “Quantum strong energy inequalities,” Phys. Rev. D 99 no. 4, (2019) 045001, arXiv:1809.05047 [gr-qc].
  30. C. J. Fewster and L. W. Osterbrink, “Quantum Energy Inequalities for the Non-Minimally Coupled Scalar Field,” J. Phys. A 41 (2008) 025402, arXiv:0708.2450 [gr-qc].
  31. E.-A. Kontou and K. D. Olum, “Quantum inequality in spacetimes with small curvature,” Phys. Rev. D 91 no. 10, (2015) 104005, arXiv:1410.0665 [gr-qc].
  32. In the sense that only terms of first order in curvature were considered.
  33. E.-A. Kontou and K. D. Olum, “Multi-step Fermi normal coordinates,” Class. Quant. Grav. 30 (2013) 175018, arXiv:1207.4493 [gr-qc].
  34. E.-A. Kontou and K. D. Olum, “Averaged null energy condition in a classical curved background,” Phys. Rev. D 87 no. 6, (2013) 064009, arXiv:1212.2290 [gr-qc].
  35. E.-A. Kontou and K. Sanders, “Energy conditions in general relativity and quantum field theory,” Class. Quant. Grav. 37 no. 19, (2020) 193001, arXiv:2003.01815 [gr-qc].
  36. Springer International Publishing, Cham, 2017.
  37. C. J. Fewster and M. J. Pfenning, “A Quantum weak energy inequality for spin one fields in curved space-time,” J. Math. Phys. 44 (2003) 4480–4513, arXiv:gr-qc/0303106.
  38. M. J. Pfenning, “Quantum inequalities for the electromagnetic field,” Phys. Rev. D 65 (2002) 024009, arXiv:gr-qc/0107075.
  39. C. J. Fewster and B. Mistry, “Quantum weak energy inequalities for the Dirac field in flat space-time,” Phys. Rev. D 68 (2003) 105010, arXiv:gr-qc/0307098.
  40. S. P. Dawson and C. J. Fewster, “An Explicit quantum weak energy inequality for Dirac fields in curved spacetimes,” Class. Quant. Grav. 23 (2006) 6659–6681, arXiv:gr-qc/0604106.
  41. C. J. Smith, “An Absolute quantum energy inequality for the Dirac field in curved spacetime,” Class. Quant. Grav. 24 (2007) 4733–4750, arXiv:0705.2203 [gr-qc].
  42. C. J. Fewster and S. Hollands, “Quantum energy inequalities in two-dimensional conformal field theory,” Rev. Math. Phys. 17 (2005) 577, arXiv:math-ph/0412028.
  43. H. Bostelmann, D. Cadamuro, and C. J. Fewster, “Quantum Energy Inequality for the Massive Ising Model,” Phys. Rev. D 88 no. 2, (2013) 025019, arXiv:1304.7682 [math-ph].
  44. M. B. Fröb and D. Cadamuro, “A quantum energy inequality in the Sine–Gordon model,” arXiv:2212.07377 [math-ph].
  45. H. Bostelmann, D. Cadamuro, and J. Mandrysch, “Quantum energy inequalities in integrable models with several particle species and bound states,” other thesis, 1, 2023.
  46. D. Cadamuro, M. B. Fröb, and C. M. Ferrera, “The Sine-Gordon QFT in de Sitter spacetime,” arXiv:2404.12324 [math-ph].
  47. E. E. Flanagan, “Quantum inequalities in two-dimensional Minkowski space-time,” Phys. Rev. D 56 (1997) 4922–4926, arXiv:gr-qc/9706006.
  48. E. E. Flanagan, “Quantum inequalities in two-dimensional curved space-times,” Phys. Rev. D 66 (2002) 104007, arXiv:gr-qc/0208066. [Erratum: Phys.Rev.D 102, 129901 (2020)].
  49. B. Freivogel, E.-A. Kontou, and D. Krommydas, “The Return of the Singularities: Applications of the Smeared Null Energy Condition,” SciPost Phys. 13 no. 1, (2022) 001, arXiv:2012.11569 [gr-qc].
  50. J. R. Fliss and B. Freivogel, “Semi-local Bounds on Null Energy in QFT,” SciPost Phys. 12 no. 3, (2022) 084, arXiv:2108.06068 [hep-th].
  51. S. Leichenauer and A. Levine, “Upper and Lower Bounds on the Integrated Null Energy in Gravity,” JHEP 01 (2019) 133, arXiv:1808.09970 [hep-th].
  52. U. Yurtsever, “Does quantum field theory enforce the averaged weak energy condition?,” Class. Quant. Grav. 7 (1990) L251–L258.
  53. R. M. Wald and U. Yurtsever, “General proof of the averaged null energy condition for a massless scalar field in two-dimensional curved space-time,” Phys. Rev. D 44 (1991) 403–416.
  54. E. E. Flanagan and R. M. Wald, “Does back reaction enforce the averaged null energy condition in semiclassical gravity?,” Phys. Rev. D 54 (1996) 6233–6283, arXiv:gr-qc/9602052.
  55. R. Verch, “The Averaged Null energy condition for general quantum field theories in two-dimensions,” J. Math. Phys. 41 (2000) 206–217, arXiv:math-ph/9904036.
  56. W. R. Kelly and A. C. Wall, “Holographic proof of the averaged null energy condition,” Phys. Rev. D 90 no. 10, (2014) 106003, arXiv:1408.3566 [gr-qc]. [Erratum: Phys.Rev.D 91, 069902 (2015)].
  57. R. Bousso, Z. Fisher, J. Koeller, S. Leichenauer, and A. C. Wall, “Proof of the Quantum Null Energy Condition,” Phys. Rev. D 93 no. 2, (2016) 024017, arXiv:1509.02542 [hep-th].
  58. T. Faulkner, R. G. Leigh, O. Parrikar, and H. Wang, “Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition,” JHEP 09 (2016) 038, arXiv:1605.08072 [hep-th].
  59. C. J. Fewster, K. D. Olum, and M. J. Pfenning, “Averaged null energy condition in spacetimes with boundaries,” Phys. Rev. D 75 (2007) 025007, arXiv:gr-qc/0609007.
  60. E.-A. Kontou and K. D. Olum, “Proof of the averaged null energy condition in a classical curved spacetime using a null-projected quantum inequality,” Phys. Rev. D 92 (2015) 124009, arXiv:1507.00297 [gr-qc].
  61. M. Visser, “Gravitational vacuum polarization. 2: Energy conditions in the Boulware vacuum,” Phys. Rev. D 54 (1996) 5116–5122, arXiv:gr-qc/9604008.
  62. A. Levi and A. Ori, “Versatile method for renormalized stress-energy computation in black-hole spacetimes,” Phys. Rev. Lett. 117 no. 23, (2016) 231101, arXiv:1608.03806 [gr-qc].
  63. G. Klinkhammer, “Averaged energy conditions for free scalar fields in flat space-times,” Phys. Rev. D 43 (1991) 2542–2548.
  64. M. Visser, “Scale anomalies imply violation of the averaged null energy condition,” Phys. Lett. B 349 (1995) 443–447, arXiv:gr-qc/9409043.
  65. D. N. Page, “Thermal Stress Tensors in Static Einstein Spaces,” Phys. Rev. D 25 (1982) 1499.
  66. M. Visser, Lorentzian wormholes: From Einstein to Hawking. 1995.
  67. L. Flamm, Beiträge zur Einsteinschen Gravitationstheorie. Hirzel, 1916.
  68. L. Flamm, “Republication of: Contributions to einstein’s theory of gravitation,” General Relativity and Gravitation 47 no. 6, (2015) 72.
  69. A. Einstein and N. Rosen, “The Particle Problem in the General Theory of Relativity,” Phys. Rev. 48 (1935) 73–77.
  70. J. A. Wheeler, “Geons,” Phys. Rev. 97 (1955) 511–536.
  71. M. S. Morris, K. S. Thorne, and U. Yurtsever, “Wormholes, Time Machines, and the Weak Energy Condition,” Phys. Rev. Lett. 61 (1988) 1446–1449.
  72. N. Sen, “Über die grenzbedingungen des schwerefeldes an unstetigkeitsflächen,” Annalen der Physik 378 no. 5-6, (1924) 365–396.
  73. K. Lanczos, “Flächenhafte verteilung der materie in der einsteinschen gravitationstheorie,” Annalen der Physik 379 no. 14, (1924) 518–540.
  74. C. Barrabes and W. Israel, “Thin shells in general relativity and cosmology: The Lightlike limit,” Phys. Rev. D 43 (1991) 1129–1142.
  75. P. Gao, D. L. Jafferis, and A. C. Wall, “Traversable Wormholes via a Double Trace Deformation,” JHEP 12 (2017) 151, arXiv:1608.05687 [hep-th].
  76. B. Freivogel, D. A. Galante, D. Nikolakopoulou, and A. Rotundo, “Traversable wormholes in AdS and bounds on information transfer,” JHEP 01 (2020) 050, arXiv:1907.13140 [hep-th].
  77. S. B. Giddings and A. Strominger, “Axion Induced Topology Change in Quantum Gravity and String Theory,” Nucl. Phys. B 306 (1988) 890–907.
  78. S. R. Coleman, “Why There Is Nothing Rather Than Something: A Theory of the Cosmological Constant,” Nucl. Phys. B 310 (1988) 643–668.
  79. F. J. Tipler, “Singularities and Causality Violation,” Annals Phys. 108 (1977) 1–36.
  80. R. P. Geroch, “Topology in general relativity,” J. Math. Phys. 8 (1967) 782–786.
  81. S. W. Hawking and G. F. Ellis, The large scale structure of space-time. Cambridge university press, 2023.
  82. J. L. Friedman, K. Schleich, and D. M. Witt, “Topological censorship,” Phys. Rev. Lett. 71 (1993) 1486–1489, arXiv:gr-qc/9305017. [Erratum: Phys.Rev.Lett. 75, 1872 (1995)].
  83. This argument is possible to be extendable to asymptotically AdS manifolds but this point requires further consideration.
  84. M. S. Morris and K. S. Thorne, “Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity,” Am. J. Phys. 56 (1988) 395–412.
  85. L. H. Ford and T. A. Roman, “Quantum field theory constrains traversable wormhole geometries,” Phys. Rev. D 53 (1996) 5496–5507, arXiv:gr-qc/9510071.
  86. C. J. Fewster and T. A. Roman, “On wormholes with arbitrarily small quantities of exotic matter,” Phys. Rev. D 72 (2005) 044023, arXiv:gr-qc/0507013.
  87. C. J. Fewster and E. Teo, “Quantum inequalities and ‘quantum interest’ as eigenvalue problems,” Phys. Rev. D 61 (2000) 084012, arXiv:gr-qc/9908073.
  88. C. J. Fewster and M. J. Pfenning, “Quantum energy inequalities and local covariance. I. Globally hyperbolic spacetimes,” J. Math. Phys. 47 (2006) 082303, arXiv:math-ph/0602042.
  89. F. J. Tipler, “Causality violation in asymptotically flat space-times,” Phys. Rev. Lett. 37 (1976) 879–882.
  90. S. W. Hawking, “The Chronology protection conjecture,” Phys. Rev. D 46 (1992) 603–611.
  91. The expression differs slightly from Ref. Freivogel:2020hiz due to the different definition of the Gaussian.
  92. R. L. Mallett, “The gravitational field of a circulating light beam,” Foundations of Physics 33 no. 9, (2003) 1307–1314.
  93. F. S. N. Lobo, “From the Flamm–Einstein–Rosen bridge to the modern renaissance of traversable wormholes,” Int. J. Mod. Phys. D 25 no. 07, (2016) 1630017, arXiv:1604.02082 [gr-qc].

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 4 likes about this paper.