Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Boosting Determinant Quantum Monte Carlo with Submatrix Updates: Unveiling the Phase Diagram of the 3D Hubbard Model (2404.09989v3)

Published 15 Apr 2024 in cond-mat.str-el and hep-lat

Abstract: Determinant Quantum Monte Carlo (DQMC) provides numerically exact solutions for strongly correlated fermionic systems but faces significant computational challenges with increasing system size. While submatrix updates were originally developed for Hirsch-Fye QMC with onsite interactions at finite temperatures [Phys. Rev. B 80, 195111 (2009)], their comprehensive application in DQMC has remained unexplored despite noted algorithmic similarities. We present the first comprehensive application of submatrix updates in DQMC, significantly extending beyond the original scope by enabling simulations with extended interactions and at zero temperature. Building upon conventional fast updates and delay updates, our generalized implementation achieves an order-of-magnitude improvement in computational efficiency, enabling simulations of the half-filled Hubbard model on lattices up to 8,000 sites - a scale previously challenging with standard DQMC implementations. This enhanced computational capability allows us to accurately determine the finite-temperature phase diagram of the 3D Hubbard model at half-filling. Our findings not only shed light on the phase transitions within these complex systems but also pave the way for more effective simulations of strongly correlated electrons, potentially guiding experimental efforts in cold atom simulations of the 3D Hubbard model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. E. Dagotto, International Journal of Modern Physics B 05, 77 (1991), https://doi.org/10.1142/S0217979291000067 .
  2. S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
  3. U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
  4. E. Kozik, M. Ferrero, and A. Georges, Phys. Rev. Lett. 114, 156402 (2015).
  5. J. E. Hirsch, Phys. Rev. B 35, 1851 (1987).
  6. R. Staudt, M. Dzierzawa, and A. Muramatsu, The European Physical Journal B - Condensed Matter and Complex Systems 17, 411 (2000).
  7. R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D 24, 2278 (1981).
  8. D. J. Scalapino and R. L. Sugar, Phys. Rev. B 24, 4295 (1981).
  9. J. E. Hirsch, Phys. Rev. B 28, 4059 (1983).
  10. G. Sugiyama and S. Koonin, Annals of Physics 168, 1 (1986).
  11. E. Loh Jr and J. Gubernatis, Electronic Phase Transitions 32, 177 (1992).
  12. S. E. Koonin, D. J. Dean, and K. Langanke, Physics reports 278, 1 (1997).
  13. J. E. Hirsch, Phys. Rev. B 31, 4403 (1985).
  14. F. F. Assaad, Phys. Rev. Lett. 83, 796 (1999).
  15. D. Scalapino, Numerical studies of the 2d hubbard model, in Handbook of High-Temperature Superconductivity (Springer, 2007) pp. 495–526.
  16. D. Zheng, G.-M. Zhang, and C. Wu, Phys. Rev. B 84, 205121 (2011).
  17. M. Hohenadler, T. C. Lang, and F. F. Assaad, Phys. Rev. Lett. 106, 100403 (2011).
  18. E. Berg, M. A. Metlitski, and S. Sachdev, Science 338, 1606 (2012).
  19. M. Hohenadler and F. F. Assaad, Journal of Physics: Condensed Matter 25, 143201 (2013).
  20. F. F. Assaad and I. F. Herbut, Phys. Rev. X 3, 031010 (2013).
  21. Z.-X. Li, Y.-F. Jiang, and H. Yao, Phys. Rev. B 91, 241117 (2015).
  22. Y. Otsuka, S. Yunoki, and S. Sorella, Phys. Rev. X 6, 011029 (2016).
  23. F. Assaad and T. Grover, Physical Review X 6, 041049 (2016).
  24. S. Gazit, M. Randeria, and A. Vishwanath, Nature Physics 13, 484 (2017).
  25. Z.-X. Li and H. Yao, Annual Review of Condensed Matter Physics 10, 337 (2019).
  26. X. Y. Xu and T. Grover, Phys. Rev. Lett. 126, 217002 (2021).
  27. R. Mondaini, S. Tarat, and R. T. Scalettar, Science 375, 418 (2022).
  28. E. Huffman and S. Chandrasekharan, Phys. Rev. D 101, 074501 (2020).
  29. S. Beyl, F. Goth, and F. F. Assaad, Phys. Rev. B 97, 085144 (2018).
  30. R. Brower, C. Rebbi, and D. Schaich, arXiv:1204.5424  (2012a).
  31. R. Brower, C. Rebbi, and D. Schaich, arXiv:1204.5424  (2012b).
  32. T. Luu and T. A. Lähde, Phys. Rev. B 93, 155106 (2016).
  33. D. Banerjee and E. Huffman, Phys. Rev. D 109, L031506 (2024).
  34. Y.-Y. He, H. Shi, and S. Zhang, Phys. Rev. Lett. 123, 136402 (2019).
  35. F. Sun and X. Y. Xu, Delay update in determinant quantum monte carlo (2023), arXiv:2308.12005 [cond-mat.str-el] .
  36. Y. Ouyang and X. Y. Xu, Phys. Rev. B 104, L241104 (2021).
  37. X. Xu, Acta Phys. Sin 71, 127101 (2022).
  38. M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).
  39. J. Hubbard, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 276, 238 (1963).
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: