Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Convergence, divergence, and inherent oscillations in MFS solutions of two-dimensional Laplace-Neumann problems (2404.07914v1)

Published 11 Apr 2024 in math.NA and cs.NA

Abstract: The method of fundamental solutions (MFS), also known as the method of auxiliary sources (MAS), is a well-known computational method for the solution of boundary-value problems. The final solution ("MAS solution") is obtained once we have found the amplitudes of $N$ auxiliary "MAS sources." Past studies have demonstrated that it is possible for the MAS solution to converge to the true solution even when the $N$ auxiliary sources diverge and oscillate. The present paper extends the past studies by demonstrating this possibility within the context of Laplace's equation with Neumann boundary conditions. One can thus obtain the correct solution from sources that, when $N$ is large, must be considered unphysical. We carefully explain the underlying reasons for the unphysical results, distinguish from other difficulties that might concurrently arise, and point to significant differences with time-dependent problems that were studied in the past.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.