Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Prospects of nuclear-coupled-dark-matter detection via correlation spectroscopy of I$_2^+$ and Ca$^+$ (2404.00616v2)

Published 31 Mar 2024 in physics.atom-ph and hep-ph

Abstract: The nature of dark matter (DM) and its interaction with the Standard Model (SM) is one of the biggest open questions in physics nowadays. The vast majority of theoretically-motivated Ultralight-DM (ULDM) models predict that ULDM couples dominantly to the SM strong/nuclear sector. This coupling leads to oscillations of nuclear parameters that are detectable by comparing clocks with different sensitivities to these nature's constants. Vibrational transitions of molecular clocks are more sensitive to a change in the nuclear parameters than the electronic transitions of atomic clocks. Here, we propose the iodine molecular ion, I$_2+$, as a sensitive detector for such a class of ULDM models. The iodine's dense spectrum allows us to match its transition frequency to that of an optical atomic clock (Ca$+$) and perform correlation spectroscopy between the two clock species. With this technique, we project a few-orders-of-magnitude improvement over the most sensitive clock comparisons performed to date. We also briefly consider the robustness of the corresponding "Earth-bound" under modifications of the $Z_N$-QCD axion model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. P. J. McMillan, Mass models of the Milky Way, Mon. Not. Roy. Astron. Soc. 414, 2446 (2011), arXiv:1102.4340 [astro-ph.GA] .
  2. J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120, 127 (1983).
  3. L. F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120, 133 (1983).
  4. M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120, 137 (1983).
  5. A. Hook, TASI Lectures on the Strong CP Problem and Axions, PoS TASI2018, 004 (2019), arXiv:1812.02669 [hep-ph] .
  6. A. Arvanitaki, J. Huang, and K. Van Tilburg, Searching for dilaton dark matter with atomic clocks, Phys. Rev. D 91, 015015 (2015a), arXiv:1405.2925 [hep-ph] .
  7. A. Banerjee, H. Kim, and G. Perez, Coherent relaxion dark matter, Phys. Rev. D 100, 115026 (2019), arXiv:1810.01889 [hep-ph] .
  8. A. Chatrchyan and G. Servant, Relaxion dark matter from stochastic misalignment, JCAP 06, 036, arXiv:2211.15694 [hep-ph] .
  9. F. Piazza and M. Pospelov, Sub-eV scalar dark matter through the super-renormalizable Higgs portal, Phys. Rev. D 82, 043533 (2010), arXiv:1003.2313 [hep-ph] .
  10. V. V. Flambaum and A. F. Tedesco, Dependence of nuclear magnetic moments on quark masses and limits on temporal variation of fundamental constants from atomic clock experiments, Phys. Rev. C 73, 055501 (2006), arXiv:nucl-th/0601050 .
  11. T. Damour and J. F. Donoghue, Phenomenology of the Equivalence Principle with Light Scalars, Class. Quant. Grav. 27, 202001 (2010a), arXiv:1007.2790 [gr-qc] .
  12. T. Damour and J. F. Donoghue, Equivalence Principle Violations and Couplings of a Light Dilaton, Phys. Rev. D 82, 084033 (2010b), arXiv:1007.2792 [gr-qc] .
  13. H. Kim and G. Perez, Oscillations of atomic energy levels induced by QCD axion dark matter, Phys. Rev. D 109, 015005 (2024), arXiv:2205.12988 [hep-ph] .
  14. Y. V. Stadnik and V. V. Flambaum, Can dark matter induce cosmological evolution of the fundamental constants of Nature?, Phys. Rev. Lett. 115, 201301 (2015), arXiv:1503.08540 [astro-ph.CO] .
  15. J.-P. Uzan, Varying Constants, Gravitation and Cosmology, Living Rev. Rel. 14, 2 (2011), arXiv:1009.5514 [astro-ph.CO] .
  16. D. Antypas et al., New Horizons: Scalar and Vector Ultralight Dark Matter, in 2022 Snowmass Summer Study (2022) arXiv:2203.14915 [hep-ex] .
  17. J. Kobayashi, A. Ogino, and S. Inouye, Measurement of the variation of electron-to-proton mass ratio using ultracold molecules produced from laser-cooled atoms, Nature Commun. 10, 3771 (2019), arXiv:1908.08722 [physics.atom-ph] .
  18. R. Oswald et al., Search for Dark-Matter-Induced Oscillations of Fundamental Constants Using Molecular Spectroscopy, Phys. Rev. Lett. 129, 031302 (2022), arXiv:2111.06883 [hep-ph] .
  19. R. Carollo, A. Frenett, and D. Hanneke, Two-Photon Vibrational Transitions in 1616{}^{16}start_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPTO+2superscriptsubscriptabsent2{}_{2}^{+}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT as Probes of Variation of the Proton-to-Electron Mass Ratio, Atoms 7, 1 (2018).
  20. D. Hanneke, B. Kuzhan, and A. Lunstad, Optical clocks based on molecular vibrations as probes of variation of the proton-to-electron mass ratio, Quantum Science and Technology 6, 014005 (2021), arXiv:2007.15750 [physics.atom-ph] .
  21. G. M. Tino, Identical particles exchange symmetry and the electric dipole moment in molecules, Symmetry 14, 2397 (2022), arXiv:2112.05342 [quant-ph] .
  22. M. Germann, X. Tong, and S. Willitsch, Observation of electric-dipole-forbidden infrared transitions in cold molecular ions, Nature Physics 10, 820 (2014).
  23. K. Najafian, Z. Meir, and S. Willitsch, From megahertz to terahertz qubits encoded in molecular ions: theoretical analysis of dipole-forbidden spectroscopic transitions in N+2superscriptsubscriptabsent2{}_{2}^{+}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT, Phys. Chem. Chem. Phys. 22, 23083 (2020).
  24. V. V. Flambaum and M. G. Kozlov, Enhanced sensitivity to variation of the fine structure constant and mp/mesubscript𝑚𝑝subscript𝑚𝑒m_{p}/m_{e}italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT / italic_m start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT in diatomic molecules, Phys. Rev. Lett. 99, 150801 (2007), arXiv:0705.0849 [physics.atom-ph] .
  25. D. Hanneke, R. A. Carollo, and D. A. Lane, High sensitivity to variation in the proton-to-electron mass ratio in O+2superscriptsubscriptabsent2{}_{2}^{+}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT, Phys. Rev. A 94, 050101 (2016), arXiv:1607.06825 [physics.atom-ph] .
  26. I. Kozyryev, Z. Lasner, and J. M. Doyle, Enhanced sensitivity to ultralight bosonic dark matter in the spectra of the linear radical SrOH, Phys. Rev. A 103, 043313 (2021), arXiv:1805.08185 [physics.atom-ph] .
  27. A. Hook, Solving the Hierarchy Problem Discretely, Phys. Rev. Lett. 120, 261802 (2018), arXiv:1802.10093 [hep-ph] .
  28. Recommended values of standard frequencies for applications including the practical realization of the metre and secondary representations of the definition of the second, [Online]. https://www.bipm.org/documents/20126/69375074/40Ca+_411THz_2021.pdf/92265f11-f4e3-17ea-ad40-5ce63b010239.
  29. J. M. Alarcon, J. Martin Camalich, and J. A. Oller, The chiral representation of the π⁢N𝜋𝑁\pi Nitalic_π italic_N scattering amplitude and the pion-nucleon sigma term, Phys. Rev. D 85, 051503 (2012), arXiv:1110.3797 [hep-ph] .
  30. Y. Aoki et al. (Flavour Lattice Averaging Group (FLAG)), FLAG Review 2021, Eur. Phys. J. C 82, 869 (2022), arXiv:2111.09849 [hep-lat] .
  31. G. P. Centers et al., Stochastic fluctuations of bosonic dark matter, Nature Commun. 12, 7321 (2021), arXiv:1905.13650 [astro-ph.CO] .
  32. A. Derevianko, Detecting dark-matter waves with a network of precision-measurement tools, Phys. Rev. A 97, 042506 (2018), arXiv:1605.09717 [physics.atom-ph] .
  33. E. O. Nadler et al. (DES), Milky Way Satellite Census. III. Constraints on Dark Matter Properties from Observations of Milky Way Satellite Galaxies, Phys. Rev. Lett. 126, 091101 (2021), arXiv:2008.00022 [astro-ph.CO] .
  34. T. Kobayashi et al., Search for Ultralight Dark Matter from Long-Term Frequency Comparisons of Optical and Microwave Atomic Clocks, Phys. Rev. Lett. 129, 241301 (2022), arXiv:2212.05721 [physics.atom-ph] .
  35. N. Sherrill et al., Analysis of atomic-clock data to constrain variations of fundamental constants, New J. Phys. 25, 093012 (2023), arXiv:2302.04565 [physics.atom-ph] .
  36. P. Touboul et al., MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle, Phys. Rev. Lett. 119, 231101 (2017), arXiv:1712.01176 [astro-ph.IM] .
  37. P. Touboul et al. (MICROSCOPE), MICROSCOPE Mission: Final Results of the Test of the Equivalence Principle, Phys. Rev. Lett. 129, 121102 (2022), arXiv:2209.15487 [gr-qc] .
  38. C. Abel et al., Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields, Phys. Rev. X 7, 041034 (2017), arXiv:1708.06367 [hep-ph] .
  39. T. S. Roussy et al., Experimental Constraint on Axionlike Particles over Seven Orders of Magnitude in Mass, Phys. Rev. Lett. 126, 171301 (2021), arXiv:2006.15787 [hep-ph] .
  40. I. Schulthess et al., New Limit on Axionlike Dark Matter Using Cold Neutrons, Phys. Rev. Lett. 129, 191801 (2022), arXiv:2204.01454 [hep-ex] .
  41. G. G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys. 741, 51 (2008), arXiv:hep-ph/0611350 .
  42. N. Bar, K. Blum, and G. D’Amico, Is there a supernova bound on axions?, Phys. Rev. D 101, 123025 (2020), arXiv:1907.05020 [hep-ph] .
  43. L. B. Leinson, Impact of axions on the Cassiopea A neutron star cooling, JCAP 09, 001, arXiv:2105.14745 [hep-ph] .
  44. S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40, 223 (1978).
  45. A. Arvanitaki, M. Baryakhtar, and X. Huang, Discovering the QCD Axion with Black Holes and Gravitational Waves, Phys. Rev. D 91, 084011 (2015b), arXiv:1411.2263 [hep-ph] .
  46. C. Ünal, F. Pacucci, and A. Loeb, Properties of ultralight bosons from heavy quasar spins via superradiance, JCAP 05, 007, arXiv:2012.12790 [hep-ph] .
  47. A. Hook and J. Huang, Probing axions with neutron star inspirals and other stellar processes, J. High Energy Phys. 2018 (06), 036, arXiv:1708.08464 [hep-ph] .
  48. J. Gasser, M. E. Sainio, and A. Švarc, Nucleons with Chiral Loops, Nucl. Phys. B 307, 779 (1988).
  49. R. L. Workman et al. (Particle Data Group), Review of Particle Physics, PTEP 2022, 083C01 (2022).
  50. W. DeRocco, P. W. Graham, and S. Rajendran, Exploring the robustness of stellar cooling constraints on light particles, Phys. Rev. D 102, 075015 (2020), arXiv:2006.15112 [hep-ph] .
  51. D. Patterson, Method for preparation and readout of polyatomic molecules in single quantum states, Physical Review A 97, 033403 (2018), arXiv:1709.00758 [quant-ph] .
  52. D. Hanneke, B. Kuzhan, and A. Lunstad, Optical clocks based on molecular vibrations as probes of variation of the proton-to-electron mass ratio, Quantum Science and Technology 6, 014005 (2020), arXiv:2007.15750 [physics.atom-ph] .
  53. N. Akerman and R. Ozeri, Atomic combination clocks, New J. Phys. 20, 123026 (2018), arXiv:1709.01247 [physics.atom-ph] .

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: