Papers
Topics
Authors
Recent
2000 character limit reached

Cosmic microwave background constraints on extended dark matter objects (2403.13072v2)

Published 19 Mar 2024 in astro-ph.CO and gr-qc

Abstract: Primordially formed extended dark objects would accrete baryonic matter and impact the ionisation history of the Universe. Insisting on consistency with the anisotropies of the cosmic microwave background, we derive constraints on the dark matter fraction for various classes of objects, of different sizes. We introduce a novel scaling technique to speed up numerical calculations and release our calculation framework in the form of a Mathematica notebook. Conservatively, we focus on spherical accretion and collisional ionisation. We find strong constraints limiting the dark matter fraction to subpercent level for objects of up to $104$ AU in size.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. H. Niikura et al., Nature Astron. 3, 524 (2019a), arXiv:1701.02151 [astro-ph.CO] .
  2. A. M. Green and B. J. Kavanagh, J. Phys. G 48, 043001 (2021), arXiv:2007.10722 [astro-ph.CO] .
  3. M. Crispim Romão and D. Croon,   (2024), arXiv:2402.00107 [astro-ph.CO] .
  4. G. Bertone et al., SciPost Phys. Core 3, 007 (2020), arXiv:1907.10610 [astro-ph.CO] .
  5. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 123, 161102 (2019), arXiv:1904.08976 [astro-ph.CO] .
  6. Z.-C. Chen and Q.-G. Huang, JCAP 08, 039 (2020), arXiv:1904.02396 [astro-ph.CO] .
  7. G. Franciolini, Primordial Black Holes: from Theory to Gravitational Wave Observations, Ph.D. thesis, Geneva U., Dept. Theor. Phys. (2021), arXiv:2110.06815 [astro-ph.CO] .
  8. B. Carr, Monthly Notices of the Royal Astronomical Society 194, 639 (1981).
  9. Y. Ali-Haïmoud and M. Kamionkowski, Phys. Rev. D 95, 043534 (2017), arXiv:1612.05644 [astro-ph.CO] .
  10. P. W. Graham and H. Ramani,   (2023), arXiv:2311.07654 [hep-ph] .
  11. E. Witten, Phys. Rev. D 30, 272 (1984).
  12. A. R. Zhitnitsky, JCAP 10, 010 (2003), arXiv:hep-ph/0202161 .
  13. F. E. Schunck and E. W. Mielke, Class. Quant. Grav. 20, R301 (2003), arXiv:0801.0307 [astro-ph] .
  14. M. Ricotti and A. Gould, Astrophys. J. 707, 979 (2009), arXiv:0908.0735 [astro-ph.CO] .
  15. E. Bertschinger, ApJS 58, 39 (1985).
  16. H. Bondi, Mon. Not. Roy. Astron. Soc. 112, 195 (1952).
  17. D. E. Osterbrock and G. J. Ferland, Astrophysics of gaseous nebulae and active galactic nuclei (2006).
  18. P. J. E. Peebles, ApJ 153, 1 (1968).
  19. D. Baumann, Cosmology (Cambridge University Press, 2022).
  20. S. Stepney and P. W. Guilbert, MNRAS 204, 1269 (1983).
  21. R. Svensson, ApJ 258, 335 (1982).
  22. H. Bondi and F. Hoyle, MNRAS 104, 273 (1944).
  23. V. Bosch-Ramon and N. Bellomo, Astron. Astrophys. 638, A132 (2020), arXiv:2004.11224 [astro-ph.CO] .
  24. P. Mroz et al.,   (2024), arXiv:2403.02386 [astro-ph.GA] .
  25. H. Niikura et al., Nat. Astron. 3, 524 (2019c), arXiv:1701.02151 [astro-ph.CO] .
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.