Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Observation of diamagnetic strange-metal phase in sulfur-copper codoped lead apatite (2403.11126v3)

Published 17 Mar 2024 in cond-mat.supr-con

Abstract: By codoping sulfur and copper into lead apatite, the crystal grains are directionally stacked and the room-temperature resistivity is reduced from insulating to $2\times10{-5}~\Omega\cdot$m. The resistance-temperature curve exhibits a nearly linear relationship at low temperature suggesting the presence of strange-metal phase, and a second-order phase transition is then observed at around 230~K during cooling the samples. A possible Meissner effect is present in dc magnetic measurements. Further hydrothermal lead-free synthesis results in smaller resistance and stronger diamagnetism, demonstrating the essential component might be sulfur-substituted copper apatite and the alkalis matter as well. A clear pathway towards superconductivity in this material is subsequently benchmarked.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. Gaël Grissonnanche, Yawen Fang, Anaëlle Legros, Simon Verret, Francis Laliberté, Clément Collignon, Jianshi Zhou, David Graf, Paul A. Goddard, Louis Taillefer,  and B. J. Ramshaw, “Linear-in temperature resistivity from an isotropic planckian scattering rate,” Nature 595, 667–672 (2021).
  2. Liyang Chen, Dale T. Lowder, Emine Bakali, Aaron Maxwell Andrews, Werner Schrenk, Monika Waas, Robert Svagera, Gaku Eguchi, Lukas Prochaska, Yiming Wang, Chandan Setty, Shouvik Sur, Qimiao Si, Silke Paschen,  and Douglas Natelson, “Shot noise in a strange metal,” Science 382, 907–911 (2023), https://www.science.org/doi/pdf/10.1126/science.abq6100 .
  3. Lu Li and Dechen Zhang, “Probes to entropy flow in strange metals,” Nature Physics 19, 307–308 (2023).
  4. D. H. Nguyen, A. Sidorenko, M. Taupin, G. Knebel, G. Lapertot, E. Schuberth,  and S. Paschen, “Superconductivity in an extreme strange metal,” Nature Communications 12, 4341 (2021).
  5. A. Legros, S. Benhabib, W. Tabis, F. Laliberté, M. Dion, M. Lizaire, B. Vignolle, D. Vignolles, H. Raffy, Z. Z. Li, P. Auban-Senzier, N. Doiron-Leyraud, P. Fournier, D. Colson, L. Taillefer,  and C. Proust, “Universal t-linear resistivity and planckian dissipation in overdoped cuprates,” Nature Physics 15, 142–147 (2019).
  6. Xingyu Jiang, Mingyang Qin, Xinjian Wei, Li Xu, Jiezun Ke, Haipeng Zhu, Ruozhou Zhang, Zhanyi Zhao, Qimei Liang, Zhongxu Wei, Zefeng Lin, Zhongpei Feng, Fucong Chen, Peiyu Xiong, Jie Yuan, Beiyi Zhu, Yangmu Li, Chuanying Xi, Zhaosheng Wang, Ming Yang, Junfeng Wang, Tao Xiang, Jiangping Hu, Kun Jiang, Qihong Chen, Kui Jin,  and Zhongxian Zhao, “Interplay between superconductivity and the strange-metal state in fese,” Nature Physics 19, 365–371 (2023).
  7. Chao Yang, Haiwen Liu, Yi Liu, Jiandong Wang, Dong Qiu, Sishuang Wang, Yang Wang, Qianmei He, Xiuli Li, Peng Li, Yue Tang, Jian Wang, X. C. Xie, James M. Valles, Jie Xiong,  and Yanrong Li, “Signatures of a strange metal in a bosonic system,” Nature 601, 205–210 (2022).
  8. Nicolas Doiron-Leyraud, Pascale Auban-Senzier, Samuel René de Cotret, Claude Bourbonnais, Denis Jérome, Klaus Bechgaard,  and Louis Taillefer, “Correlation between linear resistivity and Tcsubscript𝑇𝑐{T}_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT in the bechgaard salts and the pnictide superconductor Ba⁢(Fe1−x⁢Cox)2⁢as2BasubscriptsubscriptFe1𝑥subscriptCo𝑥2subscriptas2\text{Ba}{({\text{Fe}}_{1-x}{\text{Co}}_{x})}_{2}{\text{as}}_{2}Ba ( Fe start_POSTSUBSCRIPT 1 - italic_x end_POSTSUBSCRIPT Co start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT as start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” Phys. Rev. B 80, 214531 (2009).
  9. Vivek Aji and C. M. Varma, “Theory of the quantum critical fluctuations in cuprate superconductors,” Phys. Rev. Lett. 99, 067003 (2007).
  10. Lijun Zhu, Yan Chen,  and Chandra M. Varma, “Local quantum criticality in the two-dimensional dissipative quantum xy model,” Phys. Rev. B 91, 205129 (2015).
  11. Sukbae Lee, Ji-Hoon Kim,  and Young-Wan Kwon, “The first room-temperature ambient-pressure superconductor,”  (2023a), arXiv:2307.12008 [cond-mat.supr-con] .
  12. Sukbae Lee, Jihoon Kim, Hyun-Tak Kim, Sungyeon Im, SooMin An,  and Keun Ho Auh, “Superconductor pb10−x10𝑥{}_{10-x}start_FLOATSUBSCRIPT 10 - italic_x end_FLOATSUBSCRIPTcux𝑥{}_{x}start_FLOATSUBSCRIPT italic_x end_FLOATSUBSCRIPT(po44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT)66{}_{6}start_FLOATSUBSCRIPT 6 end_FLOATSUBSCRIPTo showing levitation at room temperature and atmospheric pressure and mechanism,”  (2023b), arXiv:2307.12037 [cond-mat.supr-con] .
  13. Pinyuan Wang, Xiaoqi Liu, Jun Ge, Chengcheng Ji, Haoran Ji, Yanzhao Liu, Yiwen Ai, Gaoxing Ma, Shichao Qi,  and Jian Wang, “Ferromagnetic and insulating behavior in both half magnetic levitation and non-levitation lk-99 like samples,” Quantum Frontiers 2, 10 (2023).
  14. Kaizhen Guo, Yuan Li,  and Shuang Jia, “Ferromagnetic half levitation of lk-99-like synthetic samples,” Science China Physics, Mechanics & Astronomy 66, 107411 (2023).
  15. T. Habamahoro, T. Bontke, M. Chirom, Z. Wu, J. M. Bao, L. Z. Deng,  and C. W. Chu, “Replication and study of anomalies in lk-99–the alleged ambient-pressure, room-temperature superconductor,”  (2023), arXiv:2311.03558 [cond-mat.supr-con] .
  16. Jicheng Liu, Chenao He, Yin-Hui Peng, Zhihao Zhen, Guanhua Chen, Jia Wang, Xiao-Bao Yang, Xianfeng Qiao, Yao Yao,  and Dongge Ma, “Long-coherence pairing of low-mass conduction electrons in copper-substituted lead apatite,”  (2023a), arXiv:2310.17160 [quant-ph] .
  17. Jicheng Liu, Chenao He, Weijie Huang, Zhihao Zhen, Guanhua Chen, Tianyong Luo, Xianfeng Qiao, Yao Yao,  and Dongge Ma, “Strange memory effect of low-field microwave absorption in copper-substituted lead apatite,”  (2023b), arXiv:2312.10391 [cond-mat.supr-con] .
  18. Hongyang Wang, Yao Yao, Ke Shi, Yijing Zhao, Hao Wu, Zhixing Wu, Zhihui Geng, Shufeng Ye,  and Ning Chen, “Possible meissner effect near room temperature in copper-substituted lead apatite,”  (2024), arXiv:2401.00999 [cond-mat.supr-con] .
  19. M.S. da Luz, F.J.H. de Carvalho, C.A.M. dos Santos, C.Y. Shigue, A.J.S. Machado,  and R. Ricardo da Silva, “Observation of asymmetric transverse voltage in granular high-tc superconductors,” Physica C: Superconductivity and its Applications 419, 71–78 (2005).
  20. V.V. Guryev, S.V. Shavkin, V.S. Kruglov,  and P.V. Volkov, “Superconducting transition of nb–ti tape studied by transverse voltage method,” Physica C: Superconductivity and its Applications 567, 1353546 (2019).
  21. Xavier D. A. Baumans, Dorin Cerbu, Obaïd-Allah Adami, Vyacheslav S. Zharinov, Niels Verellen, Gianpaolo Papari, Jeroen E. Scheerder, Gufei Zhang, Victor V. Moshchalkov, Alejandro V. Silhanek,  and Joris Van de Vondel, “Thermal and quantum depletion of superconductivity in narrow junctions created by controlled electromigration,” Nature Communications 7, 10560 (2016).
  22. Thomas L. Francavilla, Edward J. Cukauskas, Leslie H. Allen,  and P. R. Broussard, “Observation of a transverse voltage in the mixed state of ybco thin films,” IEEE Transactions on Applied Superconductivity 5, 1717–1720 (1995).
  23. A. Segal, M. Karpovski,  and A. Gerber, “Inhomogeneity and transverse voltage in superconductors,” Phys. Rev. B 83, 094531 (2011).
  24. T.L. Francavilla and R.A. Hein, ‘‘The observation of a transverse voltage at the superconducting transition of thin films,” IEEE Transactions on Magnetics 27, 1039–1042 (1991).
  25. Xiang-Yu Bi, Jun-Wei Huang, Feng Qin, Cai-Yu Qiu,  and Hong-Tao Yuan, “Quantum oscillation phenomena in low-dimensional superconductors,” Acta Physica Sinica 71, 127402–1–127402–19 (2022).
  26. Frank Deppe, Shiro Saito, Hirotaka Tanaka,  and Hideaki Takayanagi, “Determination of the capacitance of nm scale Josephson junctions,” Journal of Applied Physics 95, 2607–2613 (2004), https://pubs.aip.org/aip/jap/article-pdf/95/5/2607/18708172/2607_1_online.pdf .
Citations (3)

Summary

  • The paper demonstrates that sulfur-copper codoping transforms lead apatite into a material with a strange-metal phase and pronounced diamagnetism.
  • Employing hydrothermal synthesis, the researchers achieved a resistivity reduction to 2×10⁻⁵ Ω·m and identified a second-order phase transition near 230 K.
  • The study underscores reproducible tuning of electronic and magnetic properties, advancing potential pathways toward room-temperature superconductivity.

Overview of Diamagnetic Strange-Metal Phase Observations in Sulfur-Copper Codoped Lead Apatite

The paper addresses the synthesis and characterization of a potentially novel material, sulfur-copper codoped lead apatite (SCCLA), that exhibits intriguing diamagnetic and transport properties. Specifically, the authors explore the presence of a strange-metal phase in SCCLA, achieving substantial reductions in resistivity and reporting evidence suggestive of a Meissner effect. This paper provides a pathway towards understanding the interplay between materials' electronic structures and their superconducting capabilities.

The researchers employed a hydrothermal synthesis approach infused with sulfur and copper to modify lead apatite’s crystalline structure. The resultant material demonstrates a directional stacking of crystal grains, transitioning from an insulating state to possessing a resistivity on the order of 2×105 Ω2\times10^{-5}~\Omega\cdotm at room temperature. This marked change underscores a substantial enhancement in conductivity, which they attribute to the sulfur-copper codoping and subsequent structural transformations.

Key Findings and Numerical Results

The paper presents a notable observation of nearly linear resistivity behavior as a function of temperature at low temperatures, which is characteristic of a strange-metal phase. Furthermore, a second-order phase transition was identified around 230 K, apparent through both cooling experiments and critical temperature evaluations.

  • Resistivity: The material transitions from an insulator to a resistive state akin to graphite upon doping.
  • Magnetic Properties: Clear signs of diamagnetism were observed up to nearly room temperature, with magnetic hysteresis present up to 250 K, suggesting the potential onset of a Meissner effect.
  • Synthesized Phases: A significant contrast in the critical transitions of SCCLA was established between different samples and conditions, reinforcing the reproducibility and tuning capabilities of synthesis methods.

Complementary studies of a lead-free alternative demonstrate even lower resistance and stronger diamagnetism, indicating that lead elements in the original material might be non-critical to the superconducting-like behavior but rather contribute to the structural integrity.

Implications and Speculations on Future Development

This research contributes to the ongoing investigation into creating high-temperature superconductors by revealing a possible association between strange-metal behavior and observable superconducting transitions. The findings pose significant theoretical implications for understanding electron correlations in low-dimensional systems, aligning with the anomalous behaviors often seen in cuprate or iron-based superconductors.

Practically, the application realms of SCCLA or its derivatives could extend across electronic and energy sectors, promoting new standards in electronic materials where conductivity at ambient conditions is desirable. The evident susceptibility of the material's properties to synthesis methods invites further exploration into compositional and structural optimizations that might refine these findings into usable technologies.

Future work might focus on more accurately characterizing the superconducting phases and exploring alternative doping strategies or compatible lattice frameworks. Integrating computational models to predict possible material behaviors can further elucidate the pathways toward achieving stable room-temperature superconductors.

In conclusion, the paper forwards our understanding of how complex material systems can host intricate phases transitional between insulative and superconductive states, with broad implications for condensed matter physics and material science.

Dice Question Streamline Icon: https://streamlinehq.com
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 15 tweets and received 88 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com
Reddit Logo Streamline Icon: https://streamlinehq.com