Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Ab initio description of monopole resonances in light- and medium-mass nuclei: II. Ab initio PGCM calculations in $^{46}$Ti, $^{28}$Si and $^{24}$Mg (2402.15901v1)

Published 24 Feb 2024 in nucl-th and nucl-ex

Abstract: Giant resonances (GRs) are a striking manifestation of collective motions in atomic nuclei. The present paper is the second in a series of four dedicated to the use of the projected generator coordinate method (PGCM) for the ab initio determination of the isoscalar giant monopole resonance (GMR) in closed- and open-shell mid-mass nuclei. While the first paper was dedicated to quantifying various uncertainty sources, the present paper focuses on the first applications to three doubly-open shell nuclei, namely ${46}$Ti, ${28}$Si and ${24}$Mg. In particular, the goal is to investigate from an ab initio standpoint (i) the coupling of the GMR with the giant quadrupole resonance (GQR) in intrinsically-deformed nuclei, (ii) the possible impact of shape coexistence and shape mixing on the GMR, (iii) the GMR based on shape isomers and (iv) the impact of anharmonic effects on the monopole response. The latter is studied by comparing PGCM results to those obtained via the quasi-particle random phase approximation (QRPA), the traditional many-body approach to giant resonances, performed in a consistent setting. Eventually, PGCM results for sd-shell nuclei are in excellent agreement with experimental data, which is attributed to the capacity of the PGCM to capture the important fragmentation of the monopole response in light, intrinsically-deformed systems. Still, the comparison to data in ${28}$Si and ${24}$Mg illustrates the challenge (and the potential benefit) of extracting unambiguous experimental information.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. arXiv:2402.02228.
  2. arXiv:1911.04955, doi:10.1016/j.physletb.2020.135651.
  3. arXiv:0912.3688, doi:10.1016/j.ppnp.2010.03.001.
  4. arXiv:2203.13513, doi:10.1103/PhysRevC.107.L021302.
  5. doi:10.1103/PhysRevC.64.064308.
  6. doi:10.1143/PTP.73.889.
  7. arXiv:0804.0130, doi:10.1103/PhysRevC.77.044313.
  8. arXiv:1910.04990, doi:10.1088/1742-6596/1643/1/012129.
  9. doi:10.1103/PhysRevC.74.044308.
  10. doi:10.1103/PhysRevC.86.064309.
  11. doi:10.1016/S0375-9474(97)00616-7.
  12. doi:10.1103/PhysRevC.86.064308.
  13. doi:10.1103/PhysRevC.93.064325.
  14. doi:10.1103/PhysRevC.76.027304.
  15. arXiv:2111.07105, doi:10.1103/PhysRevC.105.024311.
  16. arXiv:0905.2901, doi:10.1103/PhysRevC.80.034604.
  17. doi:10.1007/s00601-013-0615-3.
  18. arXiv:1507.03639, doi:10.1016/j.physletb.2015.07.021.
  19. doi:10.1103/PhysRevC.93.044324.
  20. doi:10.1103/PhysRevC.104.014607.
  21. doi:10.1103/PhysRevC.80.064318.
  22. arXiv:nucl-th/0703100, doi:10.1103/PhysRevC.76.024318.
  23. arXiv:1104.3692, doi:10.1103/PhysRevC.84.014314.
  24. arXiv:2312.10410.
  25. doi:10.1016/0375-9474(85)90307-0.
  26. doi:10.1103/PhysRev.184.1231.
  27. doi:10.1103/PhysRevD.8.3346.
  28. doi:10.1103/PhysRevD.7.1620.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.