Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Ab initio description of monopole resonances in light- and medium-mass nuclei: I. Technical aspects and uncertainties of ab initio PGCM calculations (2402.02228v1)

Published 3 Feb 2024 in nucl-th and nucl-ex

Abstract: Giant resonances (GRs) are a striking manifestation of collective motions in mesoscopic systems such as atomic nuclei. Until recently, theoretical investigations have essentially relied on the (quasiparticle) random phase approximation ((Q)RPA), and extensions of it, based on phenomenological energy density functionals (EDFs). As part of a current effort to describe GRs within an ab initio theoretical scheme, the present work promotes the use of the projected generator coordinate method (PGCM). This method, which can handle anharmonic effects while satisfying symmetries of the nuclear Hamiltonian, displays a favorable (i.e. mean-field-like) scaling with system's size. Presently focusing on the isoscalar giant monopole resonance (GMR) of light- and medium-mass nuclei, PGCM's potential to deliver wide-range ab initio studies of GRs in closed- and open-shell nuclei encompassing pairing, deformation, and shape coexistence effects is demonstrated. The comparison with consistent QRPA calculations highlights PGCM's unique attributes and sheds light on the intricate interplay of nuclear collective excitations. The present paper is the first in a series of four and focuses on technical aspects and uncertainty quantification of ab initio PGCM calculations of GMR using the doubly open-shell ${46}$Ti as an illustrative example. The second paper displays results for a set of nuclei of physical interest and proceeds to the comparison with consistent (deformed) ab initio QRPA calculations. While the third paper analyzes useful moments of the monopolar strength function and different ways to access them within PGCM calculations, the fourth paper focuses on the effect of the symmetry restoration on the monopole strength function.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (85)
  1. doi:10.1016/0375-9474(76)90357-2.
  2. doi:10.1016/0370-1573(80)90001-0.
  3. arXiv:1304.7163, doi:10.1103/PhysRevC.87.064311.
  4. arXiv:1801.03672, doi:10.1016/j.ppnp.2018.03.001.
  5. doi:10.1103/RevModPhys.55.287.
  6. doi:10.1016/j.nuclphysa.2007.01.047.
  7. arXiv:0809.0169, doi:10.1103/PhysRevC.78.064316.
  8. arXiv:0804.0130, doi:10.1103/PhysRevC.77.044313.
  9. arXiv:1002.4351, doi:10.1103/PhysRevC.81.064307.
  10. doi:10.1063/1.4764229.
  11. doi:10.1140/epja/i2019-12896-9.
  12. arXiv:0905.3335, doi:10.1103/PhysRevC.80.011307.
  13. arXiv:0907.3423, doi:10.1103/PhysRevC.80.057302.
  14. arXiv:2009.00591, doi:10.1016/j.physrep.2021.06.001.
  15. arXiv:1002.3563, doi:10.1103/PhysRevC.81.054312.
  16. doi:10.1140/epja/i2016-16198-6.
  17. arXiv:0705.1044, doi:10.1103/PhysRevC.75.064308.
  18. arXiv:2211.01264, doi:10.1103/PhysRevLett.131.082501.
  19. arXiv:1307.1909, doi:10.1103/PhysRevC.88.044310.
  20. arXiv:1401.5211, doi:10.1103/PhysRevC.89.034314.
  21. arXiv:2304.07380, doi:10.1103/PhysRevC.108.014620.
  22. arXiv:2008.05061, doi:10.3389/fphy.2020.00379.
  23. doi:10.1016/j.nuclphysa.2007.03.068.
  24. arXiv:0704.1336, doi:10.1016/j.physletb.2007.06.082.
  25. arXiv:1407.3490, doi:10.1088/0954-3899/41/12/123002.
  26. arXiv:1303.7446, doi:10.1103/PhysRevLett.111.122502.
  27. arXiv:1410.2258, doi:10.1103/PhysRevC.90.064619.
  28. arXiv:1710.09741, doi:10.1088/1742-6596/966/1/012019.
  29. arXiv:2003.05865, doi:10.1103/PhysRevC.102.014320.
  30. arXiv:2312.09782.
  31. doi:10.1103/RevModPhys.75.121.
  32. arXiv:1102.4193, doi:10.1016/j.ppnp.2011.01.055.
  33. arXiv:1807.02518, doi:10.1088/1361-6471/aadebd.
  34. arXiv:1509.03058, doi:10.1103/PhysRevC.92.064310.
  35. arXiv:1707.03940, doi:10.1103/PhysRevC.96.054310.
  36. arXiv:1907.05493, doi:10.1103/PhysRevC.100.044308.
  37. doi:10.1103/PhysRevC.103.064302.
  38. arXiv:2106.08841, doi:10.1103/PhysRevC.104.054306.
  39. doi:10.1016/0370-2693(73)90321-3.
  40. doi:10.1016/0370-2693(75)90381-0.
  41. doi:10.1016/0375-9474(75)90154-2.
  42. doi:10.1016/0370-2693(75)90594-8.
  43. doi:10.1016/0375-9474(76)90400-0.
  44. doi:10.1016/0375-9474(76)90428-0.
  45. doi:10.1088/0305-4616/9/3/008.
  46. arXiv:nucl-th/9405011, doi:10.1103/PhysRevC.50.1445.
  47. doi:10.1016/0375-9474(95)00294-B.
  48. arXiv:2110.15737, doi:10.1140/epja/s10050-022-00692-z.
  49. arXiv:2111.01461, doi:10.1140/epja/s10050-022-00694-x.
  50. arXiv:1908.05424, doi:10.1103/PhysRevLett.124.232501.
  51. arXiv:1807.11053, doi:10.1103/PhysRevC.98.054311.
  52. arXiv:2209.03424, doi:10.1140/epja/s10050-023-00914-y.
  53. arXiv:2111.00797, doi:10.1140/epja/s10050-022-00693-y.
  54. doi:10.1103/PhysRev.89.1102.
  55. doi:10.1103/PhysRev.108.311.
  56. doi:10.1016/0003-4916(60)90122-6.
  57. arXiv:1512.02878, doi:10.1088/0954-3899/44/1/015103.
  58. arXiv:1704.05324, doi:10.1103/PhysRevC.97.024304.
  59. doi:10.1007/BF02710281.
  60. arXiv:2212.08598, doi:10.1103/PhysRevC.107.024315.
  61. arXiv:2308.00485.
  62. doi:10.1016/0029-5582(66)90096-4.
  63. arXiv:0901.3213, doi:10.1103/PhysRevC.79.021302.
  64. arXiv:1204.6531, doi:10.1016/j.physletb.2012.07.023.
  65. arXiv:1305.1682, doi:10.1016/j.physletb.2013.07.005.
  66. arXiv:2206.03781, doi:10.1140/epja/s10050-022-00843-2.
  67. arXiv:1911.04955, doi:10.1016/j.physletb.2020.135651.
  68. arXiv:nucl-th/0304018, doi:10.1103/PhysRevC.68.041001.
  69. arXiv:1105.2919, doi:10.1016/j.physrep.2011.02.001.
  70. arXiv:1502.04682, doi:10.1103/PhysRevC.91.051301.
  71. arXiv:nucl-th/0405016, doi:10.1103/PhysRevC.70.061002.
  72. arXiv:1012.3381, doi:10.1103/PhysRevC.83.031301.
  73. arXiv:1905.10475, doi:10.1103/PhysRevLett.126.022501.
  74. arXiv:1011.4085, doi:10.1103/PhysRevC.83.034301.
  75. arXiv:1601.03703, doi:10.1016/j.physletb.2016.03.029.
  76. arXiv:2102.10120, doi:10.1140/epja/s10050-021-00458-z.
  77. arXiv:2211.16262, doi:10.1103/PhysRevC.107.024310.
  78. arXiv:1910.04990, doi:10.1088/1742-6596/1643/1/012129.
  79. arXiv:1910.02922, doi:10.1103/PhysRevLett.123.252501.
  80. arXiv:2310.19419.
  81. doi:10.1103/PhysRevC.105.014302.
  82. arXiv:2307.15619.
  83. doi:10.1103/PhysRevC.74.044308.
  84. arXiv:1605.07885, doi:10.1103/PhysRevLett.117.052501.
  85. arXiv:2208.10870, doi:10.1103/PhysRevC.106.054301.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.