Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Response functions and giant monopole resonances for light to medium-mass nuclei from the \textit{ab initio} symmetry-adapted no-core shell model (2312.09782v1)

Published 15 Dec 2023 in nucl-th

Abstract: Using the \textit{ab initio} symmetry-adapted no-core shell model, we compute sum rules and response functions for light to medium-mass nuclei, starting from interactions that are derived in the chiral effective field theory. We investigate electromagnetic transitions of monopole, dipole and quadrupole nature for symmetric nuclei such as $4$He, ${16}$O, ${20}$Ne and ${40}$Ca. Furthermore, we study giant monopole resonance, which can provide information on the incompressibility of symmetric nuclear matter.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. M. Harakeh and A. Woude, Giant Resonances: Fundamental High-frequency Modes of Nuclear Excitation, Oxford Science Publications (Oxford University Press, 2001).
  2. A. Bohr and B. Mottelson, Nuclear Structure, Nuclear Structure, Vol. 2 (World Scientific, 1998).
  3. K. Goeke and J. Speth, Theory of Giant Resonances, Ann. Rev. Nucl. Part. Sci. 32, 65 (1982), https://doi.org/10.1146/annurev.ns.32.120182.000433 .
  4. C. Bahri and D. J. Rowe, Su(3)quasi-dynamical symmetry as an organizational mechanism for generating nuclear rotational motions, Nucl. Phys. A 662, 125 (2000).
  5. D. J. Rowe, The Emergence and Use of Symmetry in the Many-nucleon Model of Atomic Nuclei, in Emergent phenomena in atomic nuclei from large-scale modeling: a symmetry-guided perspective, edited by K. D. Launey (World Scientific Publishing Co., 2017) p. 229.
  6. S. Bacca, M. Miorelli, and G. Hagen, Electromagnetic reactions from coupled-cluster theory, Journal of Physics: Conference Series 966, 012019 (2018).
  7. C. Stumpf, T. Wolfgruber, and R. Roth, Electromagnetic strength distributions from the ab initio no-core shell model,   (2017), arXiv:1709.06840 [nucl-th].
  8. S. Bacca and S. Pastore, Electromagnetic reactions on light nuclei, J. Phys. G: Nucl. and Part. Phys. 41, 123002 (2014a).
  9. U. Garg and G. Colò, The compression-mode giant resonances and nuclear incompressibility, Prog. Part. Nucl. Phys. 101, 55 (2018).
  10. S. Bacca and S. Pastore, Electromagnetic reactions on light nuclei, J. Phys. G41, 123002 (2014b), arXiv:1407.3490 [nucl-th] .
  11. Y. Lu and C. W. Johnson, Transition sum rules in the shell model, Phys. Rev. C 97, 034330 (2018).
  12. S. Quaglioni and P. Navrátil, The 44{}^{4}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPTHe total photo-absorption cross section with two- plus three-nucleon interactions from chiral effective field theory, Phys. Lett. B 652, 370 (2007).
  13. S. Bacca and S. Pastore, Electromagnetic reactions on light nuclei, J. Phys. G: Nucl. Part. Phys. 41, 123002 (2014c).
  14. K. D. Launey, T. Dytrych, and J. P. Draayer, Symmetry-guided large-scale shell-model theory, Prog. Part. Nucl. Phys. 89, 101 (review) (2016).
  15. P. Navrátil, J. P. Vary, and B. R. Barrett, Properties of 1212{}^{12}start_FLOATSUPERSCRIPT 12 end_FLOATSUPERSCRIPTC in the Ab Initio Nuclear Shell Model, Phys. Rev. Lett. 84, 5728 (2000).
  16. B. Barrett, P. Navrátil, and J. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013).
  17. E. Dagotto, Correlated electrons in high-temperature superconductors, Rev. Mod. Phys. 66, 763 (1994).
  18. G. Hagen et al., Nature Phys 12, 186 (2016).
  19. F. Bonaiti, S. Bacca, and G. Hagen, Ab initio coupled-cluster calculations of ground and dipole excited states in He8superscriptHe8{}^{8}\mathrm{He}start_FLOATSUPERSCRIPT 8 end_FLOATSUPERSCRIPT roman_He, Phys. Rev. C 105, 034313 (2022).
  20. V. D. Efros, W. Leidemann, and G. Orlandini, Response functions from integral transforms with a Lorentz kernel, Phys. Lett. B 338, 130 (1994).
  21. D. Gazit and N. Barnea, Low-energy inelastic neutrino reactions on He4superscriptHe4{}^{4}\mathrm{He}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPT roman_He, Phys. Rev. Lett. 98, 192501 (2007).
  22. K. D. Launey, A. Mercenne, and T. Dytrych, Nuclear dynamics and reactions in the ab initio symmetry-adapted framework, Annu. Rev. Nucl. Part. Sci. 71, 253 (2021).
  23. J. P. Elliott, Collective Motion in the Nuclear Shell Model. I. Classification Schemes for States of Mixed Configurations, Proc. Roy. Soc. A 245, 128 (1958a).
  24. J. P. Elliott, Collective Motion in the Nuclear Shell Model. II. The Introduction of Intrinsic Wave-Functions, Proc. Roy. Soc. A 245, 562 (1958b).
  25. G. Rosensteel and D. J. Rowe, Nuclear Sp(3,R) Model, Phys. Rev. Lett. 38, 10 (1977).
  26. D. J. Rowe, Microscopic theory of the nuclear collective model, Reports on Progr. in Phys. 48, 1419 (1985).
  27. D. J. Rowe, Dynamical symmetries of nuclear collective models, Prog. Part. Nucl. Phys. 37, 265 (1996).
  28. O. Castaños, J. P. Draayer, and Y. Leschber, Z. Phys. A 329, 33 (1988).
  29. Y. Leschber and J. P. Draayer, Phys. Letts. B 190, 1 (1987).
  30. D. H. Gloeckner and R. D. Lawson, Phys. Lett. B 53, 313 (1974).
  31. B. J. Verhaar, A Method for the Elimination of Spurious States in the Nuclear Harmonic Oscillator Shell Model, Nucl. Phys. 21, 508 (1960).
  32. K. T. Hecht, Use of SU(3) in Elimination of Spurious Center of Mass States, Nucl. Phys. A 170, 34 (1971).
  33. D. Millener, in Group Theory and Special Symmetries in Nuclear Physics, edited by J. Draayer and J. Janecke (World Scientific, Singapore, 1992) p. 276.
  34. S. B. S. Miller, A. Ekström, and K. Hebeler, Neutron-deuteron scattering cross sections with chiral n⁢n𝑛𝑛nnitalic_n italic_n interactions using wave-packet continuum discretization, Phys. Rev. C 106, 024001 (2022).
  35. S. Kegel et al., Measurement of the α𝛼\alphaitalic_α-Particle Monopole Transition Form Factor Challenges Theory: A Low-Energy Puzzle for Nuclear Forces?, Phys. Rev. Lett. 130, 152502 (2023), arXiv:2112.10582 [nucl-ex] .
  36. Y.-W. Lui, H. L. Clark, and D. H. Youngblood, Giant resonances in O16superscriptO16{}^{16}\mathrm{O}start_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O, Phys. Rev. C 64, 064308 (2001).
  37. K. D. Launey, T. Dytrych, and J. P. Draayer, Similarity renormalization group and many-body effects in multiparticle systems, Phys. Rev. C 84, 044003 (2012).
  38. D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003).
  39. D. H. Youngblood, Y.-W. Lui, and H. L. Clark, Giant monopole resonance strength in Ca40superscriptCa40{}^{40}\mathrm{Ca}start_FLOATSUPERSCRIPT 40 end_FLOATSUPERSCRIPT roman_Ca, Phys. Rev. C 55, 2811 (1997).
  40. R. Brockmann and R. Machleidt, Nuclear saturation in a relativistic Brueckner-Hartree-Fock approach, Phys. Lett. B 149, 283 (1984).
  41. C. Drischler, K. Hebeler, and A. Schwenk, Chiral Interactions up to Next-to-Next-to-Next-to-Leading Order and Nuclear Saturation, Phys. Rev. Lett. 122, 042501 (2019).
  42. J. Blaizot, Nuclear compressibilities, Phys. Rep. 64, 171 (1980).
  43. B. Jennings and A. Jackson, Collective states in nuclei: A tale of two sounds, Phys. Rep. 66, 141 (1980).
  44. J. R. Stone, N. J. Stone, and S. A. Moszkowski, Incompressibility in finite nuclei and nuclear matter, Phys. Rev. C 89, 044316 (2014).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.