2000 character limit reached
Response functions and giant monopole resonances for light to medium-mass nuclei from the \textit{ab initio} symmetry-adapted no-core shell model (2312.09782v1)
Published 15 Dec 2023 in nucl-th
Abstract: Using the \textit{ab initio} symmetry-adapted no-core shell model, we compute sum rules and response functions for light to medium-mass nuclei, starting from interactions that are derived in the chiral effective field theory. We investigate electromagnetic transitions of monopole, dipole and quadrupole nature for symmetric nuclei such as $4$He, ${16}$O, ${20}$Ne and ${40}$Ca. Furthermore, we study giant monopole resonance, which can provide information on the incompressibility of symmetric nuclear matter.
- M. Harakeh and A. Woude, Giant Resonances: Fundamental High-frequency Modes of Nuclear Excitation, Oxford Science Publications (Oxford University Press, 2001).
- A. Bohr and B. Mottelson, Nuclear Structure, Nuclear Structure, Vol. 2 (World Scientific, 1998).
- K. Goeke and J. Speth, Theory of Giant Resonances, Ann. Rev. Nucl. Part. Sci. 32, 65 (1982), https://doi.org/10.1146/annurev.ns.32.120182.000433 .
- C. Bahri and D. J. Rowe, Su(3)quasi-dynamical symmetry as an organizational mechanism for generating nuclear rotational motions, Nucl. Phys. A 662, 125 (2000).
- D. J. Rowe, The Emergence and Use of Symmetry in the Many-nucleon Model of Atomic Nuclei, in Emergent phenomena in atomic nuclei from large-scale modeling: a symmetry-guided perspective, edited by K. D. Launey (World Scientific Publishing Co., 2017) p. 229.
- S. Bacca, M. Miorelli, and G. Hagen, Electromagnetic reactions from coupled-cluster theory, Journal of Physics: Conference Series 966, 012019 (2018).
- C. Stumpf, T. Wolfgruber, and R. Roth, Electromagnetic strength distributions from the ab initio no-core shell model, (2017), arXiv:1709.06840 [nucl-th].
- S. Bacca and S. Pastore, Electromagnetic reactions on light nuclei, J. Phys. G: Nucl. and Part. Phys. 41, 123002 (2014a).
- U. Garg and G. Colò, The compression-mode giant resonances and nuclear incompressibility, Prog. Part. Nucl. Phys. 101, 55 (2018).
- S. Bacca and S. Pastore, Electromagnetic reactions on light nuclei, J. Phys. G41, 123002 (2014b), arXiv:1407.3490 [nucl-th] .
- Y. Lu and C. W. Johnson, Transition sum rules in the shell model, Phys. Rev. C 97, 034330 (2018).
- S. Quaglioni and P. Navrátil, The 44{}^{4}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPTHe total photo-absorption cross section with two- plus three-nucleon interactions from chiral effective field theory, Phys. Lett. B 652, 370 (2007).
- S. Bacca and S. Pastore, Electromagnetic reactions on light nuclei, J. Phys. G: Nucl. Part. Phys. 41, 123002 (2014c).
- K. D. Launey, T. Dytrych, and J. P. Draayer, Symmetry-guided large-scale shell-model theory, Prog. Part. Nucl. Phys. 89, 101 (review) (2016).
- P. Navrátil, J. P. Vary, and B. R. Barrett, Properties of 1212{}^{12}start_FLOATSUPERSCRIPT 12 end_FLOATSUPERSCRIPTC in the Ab Initio Nuclear Shell Model, Phys. Rev. Lett. 84, 5728 (2000).
- B. Barrett, P. Navrátil, and J. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013).
- E. Dagotto, Correlated electrons in high-temperature superconductors, Rev. Mod. Phys. 66, 763 (1994).
- G. Hagen et al., Nature Phys 12, 186 (2016).
- F. Bonaiti, S. Bacca, and G. Hagen, Ab initio coupled-cluster calculations of ground and dipole excited states in He8superscriptHe8{}^{8}\mathrm{He}start_FLOATSUPERSCRIPT 8 end_FLOATSUPERSCRIPT roman_He, Phys. Rev. C 105, 034313 (2022).
- V. D. Efros, W. Leidemann, and G. Orlandini, Response functions from integral transforms with a Lorentz kernel, Phys. Lett. B 338, 130 (1994).
- D. Gazit and N. Barnea, Low-energy inelastic neutrino reactions on He4superscriptHe4{}^{4}\mathrm{He}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPT roman_He, Phys. Rev. Lett. 98, 192501 (2007).
- K. D. Launey, A. Mercenne, and T. Dytrych, Nuclear dynamics and reactions in the ab initio symmetry-adapted framework, Annu. Rev. Nucl. Part. Sci. 71, 253 (2021).
- J. P. Elliott, Collective Motion in the Nuclear Shell Model. I. Classification Schemes for States of Mixed Configurations, Proc. Roy. Soc. A 245, 128 (1958a).
- J. P. Elliott, Collective Motion in the Nuclear Shell Model. II. The Introduction of Intrinsic Wave-Functions, Proc. Roy. Soc. A 245, 562 (1958b).
- G. Rosensteel and D. J. Rowe, Nuclear Sp(3,R) Model, Phys. Rev. Lett. 38, 10 (1977).
- D. J. Rowe, Microscopic theory of the nuclear collective model, Reports on Progr. in Phys. 48, 1419 (1985).
- D. J. Rowe, Dynamical symmetries of nuclear collective models, Prog. Part. Nucl. Phys. 37, 265 (1996).
- O. Castaños, J. P. Draayer, and Y. Leschber, Z. Phys. A 329, 33 (1988).
- Y. Leschber and J. P. Draayer, Phys. Letts. B 190, 1 (1987).
- D. H. Gloeckner and R. D. Lawson, Phys. Lett. B 53, 313 (1974).
- B. J. Verhaar, A Method for the Elimination of Spurious States in the Nuclear Harmonic Oscillator Shell Model, Nucl. Phys. 21, 508 (1960).
- K. T. Hecht, Use of SU(3) in Elimination of Spurious Center of Mass States, Nucl. Phys. A 170, 34 (1971).
- D. Millener, in Group Theory and Special Symmetries in Nuclear Physics, edited by J. Draayer and J. Janecke (World Scientific, Singapore, 1992) p. 276.
- S. B. S. Miller, A. Ekström, and K. Hebeler, Neutron-deuteron scattering cross sections with chiral nn𝑛𝑛nnitalic_n italic_n interactions using wave-packet continuum discretization, Phys. Rev. C 106, 024001 (2022).
- S. Kegel et al., Measurement of the α𝛼\alphaitalic_α-Particle Monopole Transition Form Factor Challenges Theory: A Low-Energy Puzzle for Nuclear Forces?, Phys. Rev. Lett. 130, 152502 (2023), arXiv:2112.10582 [nucl-ex] .
- Y.-W. Lui, H. L. Clark, and D. H. Youngblood, Giant resonances in O16superscriptO16{}^{16}\mathrm{O}start_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O, Phys. Rev. C 64, 064308 (2001).
- K. D. Launey, T. Dytrych, and J. P. Draayer, Similarity renormalization group and many-body effects in multiparticle systems, Phys. Rev. C 84, 044003 (2012).
- D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003).
- D. H. Youngblood, Y.-W. Lui, and H. L. Clark, Giant monopole resonance strength in Ca40superscriptCa40{}^{40}\mathrm{Ca}start_FLOATSUPERSCRIPT 40 end_FLOATSUPERSCRIPT roman_Ca, Phys. Rev. C 55, 2811 (1997).
- R. Brockmann and R. Machleidt, Nuclear saturation in a relativistic Brueckner-Hartree-Fock approach, Phys. Lett. B 149, 283 (1984).
- C. Drischler, K. Hebeler, and A. Schwenk, Chiral Interactions up to Next-to-Next-to-Next-to-Leading Order and Nuclear Saturation, Phys. Rev. Lett. 122, 042501 (2019).
- J. Blaizot, Nuclear compressibilities, Phys. Rep. 64, 171 (1980).
- B. Jennings and A. Jackson, Collective states in nuclei: A tale of two sounds, Phys. Rep. 66, 141 (1980).
- J. R. Stone, N. J. Stone, and S. A. Moszkowski, Incompressibility in finite nuclei and nuclear matter, Phys. Rev. C 89, 044316 (2014).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.