Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Ab initio description of monopole resonances in light- and medium-mass nuclei: III. Moments evaluation in ab initio PGCM calculations (2404.14154v1)

Published 22 Apr 2024 in nucl-th

Abstract: The paper is the third of a series dedicated to the ab initio description of monopole giant resonances in mid-mass closed- and open-shell nuclei via the so-called projected generator coordinate method. The present focus is on the computation of the moments $m_k$ of the monopole strength distribution, which are used to quantify its centroid energy and dispersion. First, the capacity to compute low-order moments via two different methods is developed and benchmarked for the $m_1$ moment. Second, the impact of the angular momentum projection on the centroid energy and dispersion of the monopole strength is analysed before comparing the results to those obtained from consistent quasi-particle random phase approximation calculations. Next, the so-called energy weighted sum rule (EWSR) is investigated. First, the appropriate ESWR in the center-of-mass frame is derived analytically. Second, the exhaustion of the intrinsic EWSR is tested in order to quantify the (unwanted) local-gauge symmetry breaking of the presently employed chiral effective field theory ($\chi$EFT) interactions. Finally, the infinite nuclear matter incompressibility associated with the employed $\chi$EFT interactions is extracted by extrapolating the finite-nucleus incompressibility computed from the monopole centroid energy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. arXiv:2402.02228.
  2. arXiv:2402.15901.
  3. doi:10.1016/0370-1573(79)90079-6.
  4. arXiv:2102.10120, doi:10.1140/epja/s10050-021-00458-z.
  5. doi:{10.1017/cbo9780511596834}. URL {https://doi.org/10.1017/cbo9780511596834}
  6. arXiv:1911.04955, doi:10.1016/j.physletb.2020.135651.
  7. arXiv:0912.3688, doi:10.1016/j.ppnp.2010.03.001.
  8. arXiv:2203.13513, doi:10.1103/PhysRevC.107.L021302.
  9. arXiv:1501.06994, doi:10.1103/PhysRevC.91.044323.
  10. doi:10.1016/0375-9474(76)90428-0.
  11. doi:10.1016/0029-5582(61)90364-9.
  12. doi:10.1103/PhysRevC.79.054329.
  13. arXiv:1902.11005, doi:10.1103/PhysRevC.100.024310.
  14. arXiv:1610.03569, doi:10.1016/j.aop.2017.01.021.
  15. arXiv:nucl-th/0411083, doi:10.1063/1.1932881.
  16. arXiv:nucl-th/0508052, doi:10.1103/PhysRevC.73.034322.
  17. arXiv:1801.03672, doi:10.1016/j.ppnp.2018.03.001.
  18. doi:10.1016/0370-1573(80)90001-0.
  19. arXiv:1502.04682, doi:10.1103/PhysRevC.91.051301.
  20. arXiv:1303.4674, doi:10.1103/PhysRevLett.110.192502.
  21. arXiv:2312.09782.
  22. arXiv:1404.0744, doi:10.1103/PhysRevC.89.044316.
  23. doi:10.1063/1.525650.
  24. arXiv:2102.10889, doi:10.1140/epja/s10050-021-00621-6.
  25. doi:https://doi.org/10.1016/j.cpc.2012.07.016.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.