Ab initio description of monopole resonances in light- and medium-mass nuclei: III. Moments evaluation in ab initio PGCM calculations (2404.14154v1)
Abstract: The paper is the third of a series dedicated to the ab initio description of monopole giant resonances in mid-mass closed- and open-shell nuclei via the so-called projected generator coordinate method. The present focus is on the computation of the moments $m_k$ of the monopole strength distribution, which are used to quantify its centroid energy and dispersion. First, the capacity to compute low-order moments via two different methods is developed and benchmarked for the $m_1$ moment. Second, the impact of the angular momentum projection on the centroid energy and dispersion of the monopole strength is analysed before comparing the results to those obtained from consistent quasi-particle random phase approximation calculations. Next, the so-called energy weighted sum rule (EWSR) is investigated. First, the appropriate ESWR in the center-of-mass frame is derived analytically. Second, the exhaustion of the intrinsic EWSR is tested in order to quantify the (unwanted) local-gauge symmetry breaking of the presently employed chiral effective field theory ($\chi$EFT) interactions. Finally, the infinite nuclear matter incompressibility associated with the employed $\chi$EFT interactions is extracted by extrapolating the finite-nucleus incompressibility computed from the monopole centroid energy.
- arXiv:2402.02228.
- arXiv:2402.15901.
- doi:10.1016/0370-1573(79)90079-6.
- arXiv:2102.10120, doi:10.1140/epja/s10050-021-00458-z.
- doi:{10.1017/cbo9780511596834}. URL {https://doi.org/10.1017/cbo9780511596834}
- arXiv:1911.04955, doi:10.1016/j.physletb.2020.135651.
- arXiv:0912.3688, doi:10.1016/j.ppnp.2010.03.001.
- arXiv:2203.13513, doi:10.1103/PhysRevC.107.L021302.
- arXiv:1501.06994, doi:10.1103/PhysRevC.91.044323.
- doi:10.1016/0375-9474(76)90428-0.
- doi:10.1016/0029-5582(61)90364-9.
- doi:10.1103/PhysRevC.79.054329.
- arXiv:1902.11005, doi:10.1103/PhysRevC.100.024310.
- arXiv:1610.03569, doi:10.1016/j.aop.2017.01.021.
- arXiv:nucl-th/0411083, doi:10.1063/1.1932881.
- arXiv:nucl-th/0508052, doi:10.1103/PhysRevC.73.034322.
- arXiv:1801.03672, doi:10.1016/j.ppnp.2018.03.001.
- doi:10.1016/0370-1573(80)90001-0.
- arXiv:1502.04682, doi:10.1103/PhysRevC.91.051301.
- arXiv:1303.4674, doi:10.1103/PhysRevLett.110.192502.
- arXiv:2312.09782.
- arXiv:1404.0744, doi:10.1103/PhysRevC.89.044316.
- doi:10.1063/1.525650.
- arXiv:2102.10889, doi:10.1140/epja/s10050-021-00621-6.
- doi:https://doi.org/10.1016/j.cpc.2012.07.016.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.