Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Empirical Study on Low Code Programming using Traditional vs Large Language Model Support (2402.01156v2)

Published 2 Feb 2024 in cs.SE

Abstract: Low-code programming (LCP) refers to programming using models at higher levels of abstraction, resulting in less manual and more efficient programming, and reduced learning effort for amateur developers. Many LCP tools have rapidly evolved and have benefited from the concepts of visual programming languages (VPLs) and programming by demonstration (PBD). With huge increase in interest in using LLMs in software engineering, LLM-based LCP has began to become increasingly important. However, the technical principles and application scenarios of traditional approaches to LCP and LLM-based LCP are significantly different. Understanding these key differences and characteristics in the application of the two approaches to LCP by users is crucial for LCP providers in improving existing and developing new LCP tools, and in better assisting users in choosing the appropriate LCP technology. We conducted an empirical study of both traditional LCP and LLM-based LCP. We analyzed developers' discussions on Stack Overflow (SO) over the past three years and then explored the similarities and differences between traditional LCP and LLM-based LCP features and developer feedback. Our findings reveal that while traditional LCP and LLM-based LCP share common primary usage scenarios, they significantly differ in scope, limitations and usage throughout the software development lifecycle, particularly during the implementation phase. We also examine how LLMs impact and integrate with LCP, discussing the latest technological developments in LLM-based LCP, such as its integration with VPLs and the application of LLM Agents in software engineering.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: