Papers
Topics
Authors
Recent
2000 character limit reached

Microlensing signatures of extended dark objects using machine learning (2402.00107v2)

Published 31 Jan 2024 in astro-ph.CO and hep-ph

Abstract: This paper presents a machine learning-based method for the detection of the unique gravitational microlensing signatures of extended dark objects, such as boson stars, axion miniclusters and subhalos. We adapt MicroLIA, a machine learning-based package tailored to handle the challenges posed by low-cadence data in microlensing surveys. Using realistic observational timestamps, our models are trained on simulated light curves to distinguish between microlensing by point-like and extended lenses, as well as from other object classes which give a variable magnitude. We show that boson stars, examples of objects with a relatively flat mass distribution, can be confidently identified for $0.8 \lesssim r/r_E\lesssim 3$. Intriguingly, we also find that more sharply peaked structures, such as NFW-subhalos, can be distinctly recognized from point-lenses under regular observation cadence. Our findings significantly advance the potential of microlensing data in uncovering the elusive nature of extended dark objects. The code and dataset used are also provided.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. H. Niikura et al., Nature Astron. 3, 524 (2019a), arXiv:1701.02151 [astro-ph.CO] .
  2. A. M. Green and B. J. Kavanagh, J. Phys. G 48, 043001 (2021), arXiv:2007.10722 [astro-ph.CO] .
  3. G. Bertone et al., SciPost Phys. Core 3, 007 (2020), arXiv:1907.10610 [astro-ph.CO] .
  4. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 123, 161102 (2019), arXiv:1904.08976 [astro-ph.CO] .
  5. Z.-C. Chen and Q.-G. Huang, JCAP 08, 039 (2020), arXiv:1904.02396 [astro-ph.CO] .
  6. G. Franciolini, Primordial Black Holes: from Theory to Gravitational Wave Observations, Ph.D. thesis, Geneva U., Dept. Theor. Phys. (2021), arXiv:2110.06815 [astro-ph.CO] .
  7. R. Ruffini and S. Bonazzola, Phys. Rev. 187, 1767 (1969).
  8. M. Gleiser, Phys. Rev. D38, 2376 (1988), [Erratum: Phys. Rev.D39,no.4,1257(1989)].
  9. A. L. Erickcek and K. Sigurdson, Phys. Rev. D 84, 083503 (2011).
  10. G. Barenboim and J. Rasero, JHEP 04, 138 (2014), arXiv:1311.4034 [hep-ph] .
  11. A. Einstein, Science 84, 506 (1936).
  12. M. Crispim Romão and D. Croon, “Light curves for variable, point-like microlensing, and extended objects microlensing sources with regular cadence and OGLE-II timestamps cadence.”  (2024).
  13. “Nasa exoplanet archive,” https://exoplanetarchive.ipac.caltech.edu/, accessed: 25-01-2024.
  14. “Ukirt microlensing survey information,” https://exoplanetarchive.ipac.caltech.edu/docs/UKIRTMission.html, accessed: 25-01-2024.
  15. D. Spergel et al.,   (2015), arXiv:1503.03757 [astro-ph.IM] .
  16. H. Niikura et al., Nat. Astron. 3, 524 (2019c), arXiv:1701.02151 [astro-ph.CO] .
  17. H. J. Witt and S. Mao, ApJ 430, 505 (1994).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 39 likes about this paper.