Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Generically Computable Linear Orderings (2401.14598v1)

Published 26 Jan 2024 in math.LO

Abstract: We study notions of generic and coarse computability in the context of computable structure theory. Our notions are stratified by the $\Sigma_\beta$ hierarchy. We focus on linear orderings. We show that at the $\Sigma_1$ level all linear orderings have both generically and coarsely computable copies. This behavior changes abruptly at higher levels; we show that at the $\Sigma_{\alpha+2}$ level for any $\alpha\in\omega_1{ck}$ the set of linear orderings with generically or coarsely computable copies is $\mathbf{\Sigma}_11$-complete and therefore maximally complicated. This development is new even in the general analysis of generic and coarse computability of countable structures. In the process of proving these results we introduce new tools for understanding generically and coarsely computable structures. We are able to give a purely structural statement that is equivalent to having a generically computable copy and show that every relational structure with only finitely many relations has coarsely and generically computable copies at the lowest level of the hierarchy.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: