Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Harnessing Transparent Learning Analytics for Individualized Support through Auto-detection of Engagement in Face-to-Face Collaborative Learning (2401.10264v1)

Published 3 Jan 2024 in cs.CY and cs.AI

Abstract: Using learning analytics to investigate and support collaborative learning has been explored for many years. Recently, automated approaches with various artificial intelligence approaches have provided promising results for modelling and predicting student engagement and performance in collaborative learning tasks. However, due to the lack of transparency and interpretability caused by the use of "black box" approaches in learning analytics design and implementation, guidance for teaching and learning practice may become a challenge. On the one hand, the black box created by machine learning algorithms and models prevents users from obtaining educationally meaningful learning and teaching suggestions. On the other hand, focusing on group and cohort level analysis only can make it difficult to provide specific support for individual students working in collaborative groups. This paper proposes a transparent approach to automatically detect student's individual engagement in the process of collaboration. The results show that the proposed approach can reflect student's individual engagement and can be used as an indicator to distinguish students with different collaborative learning challenges (cognitive, behavioural and emotional) and learning outcomes. The potential of the proposed collaboration analytics approach for scaffolding collaborative learning practice in face-to-face contexts is discussed and future research suggestions are provided.

Summary

We haven't generated a summary for this paper yet.