The Morse-Smale Property of the Thurston Spine (2401.05734v3)
Abstract: The Thurston spine consists of the subset of Teichm\"uller space at which the set of shortest curves, the systoles, cuts the surface into polygons. The systole function is a topological Morse function on Teichm\"uller space. This paper studies the local properties of the Thurston spine, and the smooth pieces out of which it is constructed. Some of these local properties are shown to have global consequences, for example that the Thurston spine satisfies properties defined in terms of the systole function analogous to that of Morse-Smale complexes of (smooth) Morse functions on compact manifolds with boundary.
- H. Akrout. Singularités topologiques des systoles généralisées. Topology, 42(2):291–308, 2003.
- A. Barvinok. Lattice points, polyhedra, and complexity. In Geometric combinatorics, volume 13 of IAS/Park City Math. Ser., pages 19–62. American Mathematical Society, Providence, RI, 2007.
- L. Bers. Nielsen extensions of Riemann surfaces. Annales Academiæ Scientiarum Fennicæ, Series A. I. Mathematica, 2:29–34, 1976.
- L. Bers. An Inequality for Riemann Surfaces, pages 87–93. Springer Berlin Heidelberg, Berlin, Heidelberg, 1985.
- Shearing coordinates and convexity of length functions on Teichmüller space. American Journal of Mathematics, 135(6):1449–1476, 2013.
- M. Fortier Bourque. The dimension of Thurston’s spine. arXiv:2211.08923, 2022.
- M. Brion and M. Vergne. Lattice points in simple polytopes. Journal of the American Mathematical Society, 10(2):371–392, 1997.
- I. Irmer. An explicit generating set for the Steinberg module of the mapping class group. arXiv:2312.08721, 2023.
- S. Kerckhoff. The Nielsen realization problem. Annals of Mathematics, 117(2):235–265, 1983.
- J. Lee. Introduction to smooth manifolds, 2nd Edition, volume 218 of Graduate Texts in Mathematics. Springer, New York, 2013.
- S. Lojasiewicz. Triangulation of semi-analytic sets. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 18(4):449–474, 1964.
- O. Mathieu. Estimating the dimension of the Thurston spine. arXiv:2310.15618, 2023.
- M. Morse. Topologically non-degenerate functions on a compact n𝑛nitalic_n-manifold M𝑀Mitalic_M. Journal d’Analyse Mathématique, 7:189–208, 1959.
- P. Schmutz Schaller. Systoles and topological Morse functions for Riemann surfaces. Journal of Differential Geometry, 52(3):407–452, 1999.
- P. Schmutz Schaller. Riemann surfaces with longest systole and an improved Voronoĭ algorithm. Archiv der Mathematik, 76(3):231–240, 2001.
- W. Thurston. A spine for Teichmüller space. Preprint, 1985.
- S. Wolpert. An elementary formula for the Fenchel-Nielsen twist. Commentarii Mathematici Helvetici, 56(1):132–135, 1981.
- S. Wolpert. Geodesic length functions and the Nielsen problem. Journal of Differential Geometry, 25(2):275–296, 1987.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.