Testing Connectedness of Images (2312.03681v2)
Abstract: We investigate algorithms for testing whether an image is connected. Given a proximity parameter $\epsilon\in(0,1)$ and query access to a black-and-white image represented by an $n\times n$ matrix of Boolean pixel values, a (1-sided error) connectedness tester accepts if the image is connected and rejects with probability at least 2/3 if the image is $\epsilon$-far from connected. We show that connectedness can be tested nonadaptively with $O(\frac 1{\epsilon2})$ queries and adaptively with $O(\frac{1}{\epsilon{3/2}} \sqrt{\log\frac{1}{\epsilon}})$ queries. The best connectedness tester to date, by Berman, Raskhodnikova, and Yaroslavtsev (STOC 2014) had query complexity $O(\frac 1{\epsilon2}\log \frac 1{\epsilon})$ and was adaptive. We also prove that every nonadaptive, 1-sided error tester for connectedness must make $\Omega(\frac 1\epsilon\log \frac 1\epsilon)$ queries.
- Testing hereditary properties of ordered graphs and matrices. In C. Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 848–858. IEEE Computer Society, 2017. doi: 10.1109/FOCS.2017.83. URL https://doi.org/10.1109/FOCS.2017.83.
- O. Ben-Eliezer and E. Fischer. Earthmover resilience and testing in ordered structures. In R. A. Servedio, editor, 33rd Computational Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume 102 of LIPIcs, pages 18:1–18:35. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi: 10.4230/LIPIcs.CCC.2018.18. URL https://doi.org/10.4230/LIPIcs.CCC.2018.18.
- Deleting and testing forbidden patterns in multi-dimensional arrays. In I. Chatzigiannakis, P. Indyk, F. Kuhn, and A. Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 9:1–9:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi: 10.4230/LIPIcs.ICALP.2017.9. URL https://doi.org/10.4230/LIPIcs.ICALP.2017.9.
- Estimating the number of connected components in sublinear time. Inf. Process. Lett., 114(11):639–642, 2014. doi: 10.1016/j.ipl.2014.05.008. URL https://doi.org/10.1016/j.ipl.2014.05.008.
- lpsubscript𝑙𝑝l_{p}italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-testing. In D. B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 164–173. ACM, 2014. doi: 10.1145/2591796.2591887. URL https://doi.org/10.1145/2591796.2591887.
- The power and limitations of uniform samples in testing properties of figures. Algorithmica, 81(3):1247–1266, 2019a.
- Testing figures under the uniform distribution. Random Struct. Algorithms, 54(3):413–443, 2019b.
- Tolerant testers of image properties. ACM Transactions on Algorithms (TALG), 18(4):1–39, 2022.
- Testing connectedness of images. In N. Megow and A. D. Smith, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2023, September 11-13, 2023, Atlanta, Georgia, USA, volume 275 of LIPIcs, pages 66:1–66:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi: 10.4230/LIPICS.APPROX/RANDOM.2023.66. URL https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.66.
- Approximating the minimum spanning tree weight in sublinear time. SIAM J. Comput., pages 1370–1379, 2005.
- E. Fischer and I. Newman. Testing of matrix-poset properties. Comb., 27(3):293–327, 2007. doi: 10.1007/s00493-007-2154-3. URL https://doi.org/10.1007/s00493-007-2154-3.
- O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica, 32(2):302–343, 2002.
- Property testing and its connection to learning and approximation. J. ACM, 45(4):653–750, 1998.
- Applying property testing to an image partitioning problem. IEEE Trans. Pattern Anal. Mach. Intell., 33(2):256–265, 2011.
- Tight approximation of image matching. CoRR, abs/1111.1713, 2011.
- Fast-match: Fast affine template matching. In CVPR, pages 2331–2338. IEEE, 2013.
- M. Minsky and S. A. Papert. Perceptrons: An Introduction to Computational Geometry. The MIT Press, 09 2017. ISBN 9780262343930. doi: 10.7551/mitpress/11301.001.0001. URL https://doi.org/10.7551/mitpress/11301.001.0001.
- Vision sensor-based shoe detection for human tracking in a human–robot coexisting environment: A photometric invariant approach using dbscan algorithm. IEEE Sensors Journal, 19(12):4549–4559, 2019.
- S. Raskhodnikova. Approximate testing of visual properties. In S. Arora, K. Jansen, J. D. P. Rolim, and A. Sahai, editors, RANDOM-APPROX, volume 2764 of Lecture Notes in Computer Science, pages 370–381. Springer, 2003. ISBN 3-540-40770-7.
- D. Ron and G. Tsur. Testing properties of sparse images. ACM Trans. Algorithms, 10(4):17:1–17:52, 2014. doi: 10.1145/2635806. URL http://doi.acm.org/10.1145/2635806.
- R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to program testing. SIAM J. Comput., 25(2):252–271, 1996.
- A. C. Yao. Probabilistic computation, towards a unified measure of complexity. In Proceedings of the Eighteenth Annual Symposium on Foundations of Computer Science, pages 222–227, 1977.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.