Papers
Topics
Authors
Recent
2000 character limit reached

Boolean Unateness Testing with $\widetilde{O}(n^{3/4})$ Adaptive Queries

Published 19 Aug 2017 in cs.CC | (1708.05786v1)

Abstract: We give an adaptive algorithm which tests whether an unknown Boolean function $f\colon {0, 1}n \to{0, 1}$ is unate, i.e. every variable of $f$ is either non-decreasing or non-increasing, or $\epsilon$-far from unate with one-sided error using $\widetilde{O}(n{3/4}/\epsilon2)$ queries. This improves on the best adaptive $O(n/\epsilon)$-query algorithm from Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova and Seshadhri when $1/\epsilon \ll n{1/4}$. Combined with the $\widetilde{\Omega}(n)$-query lower bound for non-adaptive algorithms with one-sided error of [CWX17, BCPRS17], we conclude that adaptivity helps for the testing of unateness with one-sided error. A crucial component of our algorithm is a new subroutine for finding bi-chromatic edges in the Boolean hypercube called adaptive edge search.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.