Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing Positive Semidefiniteness Using Linear Measurements (2204.03782v4)

Published 8 Apr 2022 in cs.DS, cs.NA, and math.NA

Abstract: We study the problem of testing whether a symmetric $d \times d$ input matrix $A$ is symmetric positive semidefinite (PSD), or is $\epsilon$-far from the PSD cone, meaning that $\lambda_{\min}(A) \leq - \epsilon |A|_p$, where $|A|_p$ is the Schatten-$p$ norm of $A$. In applications one often needs to quickly tell if an input matrix is PSD, and a small distance from the PSD cone may be tolerable. We consider two well-studied query models for measuring efficiency, namely, the matrix-vector and vector-matrix-vector query models. We first consider one-sided testers, which are testers that correctly classify any PSD input, but may fail on a non-PSD input with a tiny failure probability. Up to logarithmic factors, in the matrix-vector query model we show a tight $\widetilde{\Theta}(1/\epsilon{p/(2p+1)})$ bound, while in the vector-matrix-vector query model we show a tight $\widetilde{\Theta}(d{1-1/p}/\epsilon)$ bound, for every $p \geq 1$. We also show a strong separation between one-sided and two-sided testers in the vector-matrix-vector model, where a two-sided tester can fail on both PSD and non-PSD inputs with a tiny failure probability. In particular, for the important case of the Frobenius norm, we show that any one-sided tester requires $\widetilde{\Omega}(\sqrt{d}/\epsilon)$ queries. However we introduce a bilinear sketch for two-sided testing from which we construct a Frobenius norm tester achieving the optimal $\widetilde{O}(1/\epsilon2)$ queries. We also give a number of additional separations between adaptive and non-adaptive testers. Our techniques have implications beyond testing, providing new methods to approximate the spectrum of a matrix with Frobenius norm error using dimensionality reduction in a way that preserves the signs of eigenvalues.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Deanna Needell (155 papers)
  2. William Swartworth (12 papers)
  3. David P. Woodruff (207 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.