Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Gravitational wave populations and cosmology with neural posterior estimation (2311.12093v2)

Published 20 Nov 2023 in gr-qc, astro-ph.CO, and hep-ph

Abstract: We apply neural posterior estimation for fast-and-accurate hierarchical Bayesian inference of gravitational wave populations. We use a normalizing flow to estimate directly the population hyper-parameters from a collection of individual source observations. This approach provides complete freedom in event representation, automatic inclusion of selection effects, and (in contrast to likelihood estimation) without the need for stochastic samplers to obtain posterior samples. Since the number of events may be unknown when the network is trained, we split into sub-population analyses that we later recombine; this allows for fast sequential analyses as additional events are observed. We demonstrate our method on a toy problem of dark siren cosmology, and show that inference takes just a few minutes and scales to $\sim 600$ events before performance degrades. We argue that neural posterior estimation therefore represents a promising avenue for population inference with large numbers of events.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. J. Aasi et al., Advanced LIGO, Classical and Quantum Gravity 32, 074001 (2015).
  2. A. Buikema et al. (aLIGO), Sensitivity and performance of the Advanced LIGO detectors in the third observing run, Phys. Rev. D 102, 062003 (2020), arXiv:2008.01301 [astro-ph.IM] .
  3. M. Tse et al., Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy, Phys. Rev. Lett. 123, 231107 (2019).
  4. F. Acernese et al. (VIRGO), Advanced Virgo: a second-generation interferometric gravitational wave detector, Class. Quant. Grav. 32, 024001 (2015), arXiv:1408.3978 [gr-qc] .
  5. F. Acernese et al. (Virgo), Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light, Phys. Rev. Lett. 123, 231108 (2019).
  6. T. Akutsu et al. (KAGRA), Overview of KAGRA: Detector design and construction history, PTEP 2021, 05A101 (2021), arXiv:2005.05574 [physics.ins-det] .
  7. M. Fishbach, D. E. Holz, and B. Farr, Are LIGO’s Black Holes Made From Smaller Black Holes?, Astrophys. J. Lett. 840, L24 (2017), arXiv:1703.06869 [astro-ph.HE] .
  8. B. P. Abbott et al. (LIGO Scientific, Virgo), Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo, Astrophys. J. Lett. 882, L24 (2019a), arXiv:1811.12940 [astro-ph.HE] .
  9. M. Isi, K. Chatziioannou, and W. M. Farr, Hierarchical test of general relativity with gravitational waves, Phys. Rev. Lett. 123, 121101 (2019), arXiv:1904.08011 [gr-qc] .
  10. R. Abbott et al. (LIGO Scientific, Virgo), Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog, Astrophys. J. Lett. 913, L7 (2021b), arXiv:2010.14533 [astro-ph.HE] .
  11. V. Tiwari and S. Fairhurst, The Emergence of Structure in the Binary Black Hole Mass Distribution, Astrophys. J. Lett. 913, L19 (2021), arXiv:2011.04502 [astro-ph.HE] .
  12. C. Karathanasis, S. Mukherjee, and S. Mastrogiovanni, Binary black holes population and cosmology in new lights: signature of PISN mass and formation channel in GWTC-3, Mon. Not. Roy. Astron. Soc. 523, 4539 (2023), arXiv:2204.13495 [astro-ph.CO] .
  13. M. Fishbach, C. Kimball, and V. Kalogera, Limits on Hierarchical Black Hole Mergers from the Most Negative χ𝜒\chiitalic_χ e_⁢f⁢fsubscript𝑒_𝑓𝑓{}_{\_}{eff}start_FLOATSUBSCRIPT _ end_FLOATSUBSCRIPT italic_e italic_f italic_f Systems, Astrophys. J. Lett. 935, L26 (2022), arXiv:2207.02924 [astro-ph.HE] .
  14. C. Ye and M. Fishbach, Inferring the Neutron Star Maximum Mass and Lower Mass Gap in Neutron Star–Black Hole Systems with Spin, Astrophys. J. 937, 73 (2022), arXiv:2202.05164 [astro-ph.HE] .
  15. C. Adamcewicz and E. Thrane, Do unequal-mass binary black hole systems have larger χ𝜒\chiitalic_χeff? Probing correlations with copulas in gravitational-wave astronomy, Mon. Not. Roy. Astron. Soc. 517, 3928 (2022), arXiv:2208.03405 [astro-ph.HE] .
  16. T. A. Callister and W. M. Farr, A Parameter-Free Tour of the Binary Black Hole Population,   (2023), arXiv:2302.07289 [astro-ph.HE] .
  17. J. Sadiq, T. Dent, and M. Gieles, Binary vision: The merging black hole binary mass distribution via iterative density estimation,  (2023), arXiv:2307.12092 [astro-ph.HE] .
  18. B. P. Abbott et al. (LIGO Scientific, Virgo), Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1, Phys. Rev. D 100, 104036 (2019b), arXiv:1903.04467 [gr-qc] .
  19. R. Abbott et al. (LIGO Scientific, Virgo), Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog, Phys. Rev. D 103, 122002 (2021c), arXiv:2010.14529 [gr-qc] .
  20. I. Magana Hernandez, Constraining the number of spacetime dimensions from GWTC-3 binary black hole mergers, Phys. Rev. D 107, 084033 (2023), arXiv:2112.07650 [astro-ph.HE] .
  21. J. M. Ezquiaga, Hearing gravity from the cosmos: GWTC-2 probes general relativity at cosmological scales, Phys. Lett. B 822, 136665 (2021a), arXiv:2104.05139 [astro-ph.CO] .
  22. M. Mancarella, E. Genoud-Prachex, and M. Maggiore, Cosmology and modified gravitational wave propagation from binary black hole population models, PhRvD 105, 064030 (2022), arXiv:2112.05728 [gr-qc] .
  23. M. Isi, W. M. Farr, and K. Chatziioannou, Comparing Bayes factors and hierarchical inference for testing general relativity with gravitational waves, Phys. Rev. D 106, 024048 (2022), arXiv:2204.10742 [gr-qc] .
  24. R. Niu, T. Zhu, and W. Zhao, Testing Lorentz invariance of gravity in the Standard-Model Extension with GWTC-3, JCAP 12, 011, arXiv:2202.05092 [gr-qc] .
  25. A. Chen, R. Gray, and T. Baker, Testing the nature of gravitational wave propagation using dark sirens and galaxy catalogues,  (2023), arXiv:2309.03833 [gr-qc] .
  26. B. P. Abbott et al. (LIGO Scientific, Virgo), GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017a), arXiv:1710.05832 [gr-qc] .
  27. B. F. Schutz, Determining the Hubble Constant from Gravitational Wave Observations, Nature 323, 310 (1986).
  28. W. Del Pozzo, Inference of the cosmological parameters from gravitational waves: application to second generation interferometers, Phys. Rev. D 86, 043011 (2012), arXiv:1108.1317 [astro-ph.CO] .
  29. R. Gray et al., Cosmological inference using gravitational wave standard sirens: A mock data analysis, Phys. Rev. D 101, 122001 (2020), arXiv:1908.06050 [gr-qc] .
  30. R. Gray, C. Messenger, and J. Veitch, A pixelated approach to galaxy catalogue incompleteness: improving the dark siren measurement of the Hubble constant, Mon. Not. Roy. Astron. Soc. 512, 1127 (2022), arXiv:2111.04629 [astro-ph.CO] .
  31. R. Gray et al., Joint cosmological and gravitational-wave population inference using dark sirens and galaxy catalogues,   (2023), arXiv:2308.02281 [astro-ph.CO] .
  32. S. R. Taylor, J. R. Gair, and I. Mandel, Hubble without the Hubble: Cosmology using advanced gravitational-wave detectors alone, Phys. Rev. D 85, 023535 (2012), arXiv:1108.5161 [gr-qc] .
  33. S. R. Taylor and J. R. Gair, Cosmology with the lights off: standard sirens in the Einstein Telescope era, Phys. Rev. D 86, 023502 (2012), arXiv:1204.6739 [astro-ph.CO] .
  34. J. M. Ezquiaga and D. E. Holz, Spectral Sirens: Cosmology from the Full Mass Distribution of Compact Binaries, Phys. Rev. Lett. 129, 061102 (2022), arXiv:2202.08240 [astro-ph.CO] .
  35. N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  36. H.-Y. Chen, M. Fishbach, and D. E. Holz, A two per cent Hubble constant measurement from standard sirens within five years, Nature 562, 545 (2018), arXiv:1712.06531 [astro-ph.CO] .
  37. I. Gupta, Using Gray Sirens to Resolve the Hubble-Lemaître Tension,   (2022), arXiv:2212.00163 [gr-qc] .
  38. L.-G. Zhu and X. Chen, The Dark Side of Using Dark Sirens to Constrain the Hubble–Lemaître Constant, Astrophys. J. 948, 26 (2023), arXiv:2302.10621 [astro-ph.CO] .
  39. H. Leandro, V. Marra, and R. Sturani, Measuring the Hubble constant with black sirens, Phys. Rev. D 105, 023523 (2022), arXiv:2109.07537 [gr-qc] .
  40. C. Talbot and E. Thrane, Flexible and Accurate Evaluation of Gravitational-wave Malmquist Bias with Machine Learning, Astrophys. J. 927, 76 (2022), arXiv:2012.01317 [gr-qc] .
  41. K. W. K. Wong, G. Contardo, and S. Ho, Gravitational wave population inference with deep flow-based generative network, Phys. Rev. D 101, 123005 (2020), arXiv:2002.09491 [astro-ph.IM] .
  42. F. Gerardi, S. M. Feeney, and J. Alsing, Unbiased likelihood-free inference of the Hubble constant from light standard sirens 10.1103/PhysRevD.104.083531 (2021), arXiv:2104.02728 [astro-ph.CO] .
  43. M. Mould, D. Gerosa, and S. R. Taylor, Deep learning and Bayesian inference of gravitational-wave populations: Hierarchical black-hole mergers, Phys. Rev. D 106, 103013 (2022), arXiv:2203.03651 [astro-ph.HE] .
  44. E. G. Tabak and E. Vanden-Eijnden, Density estimation by dual ascent of the log-likelihood, Communications in Mathematical Sciences 8, 217 (2010).
  45. E. G. Tabak and C. V. Turner, A family of nonparametric density estimation algorithms, Communications on Pure and Applied Mathematics 66, 145 (2013).
  46. L. Dinh, D. Krueger, and Y. Bengio, NICE: Non-linear Independent Components Estimation, arXiv e-prints , arXiv:1410.8516 (2014), arXiv:1410.8516 [cs.LG] .
  47. D. Jimenez Rezende and S. Mohamed, Variational Inference with Normalizing Flows,   (2015), arXiv:1505.05770 [stat.ML] .
  48. I. Kobyzev, S. J. D. Prince, and M. A. Brubaker, Normalizing Flows: An Introduction and Review of Current Methods,   (2019), arXiv:1908.09257 [stat.ML] .
  49. J. Köhler, L. Klein, and F. Noé, Equivariant flows: sampling configurations for multi-body systems with symmetric energies, arXiv preprint arXiv:1910.00753  (2019).
  50. S. R. Green, C. Simpson, and J. Gair, Gravitational-wave parameter estimation with autoregressive neural network flows, Phys. Rev. D 102, 104057 (2020), arXiv:2002.07656 [astro-ph.IM] .
  51. S. R. Green and J. Gair, Complete parameter inference for GW150914 using deep learning, Mach. Learn. Sci. Tech. 2, 03LT01 (2021), arXiv:2008.03312 [astro-ph.IM] .
  52. J. M. Ezquiaga and M. Zumalacárregui, Dark Energy in light of Multi-Messenger Gravitational-Wave astronomy, Front. Astron. Space Sci. 5, 44 (2018), arXiv:1807.09241 [astro-ph.CO] .
  53. J. M. Ezquiaga and D. E. Holz, Jumping the Gap: Searching for LIGO’s Biggest Black Holes, Astrophys. J. Lett. 909, L23 (2021), arXiv:2006.02211 [astro-ph.HE] .
  54. J. M. Ezquiaga, Hearing gravity from the cosmos: GWTC-2 probes general relativity at cosmological scales, Phys. Lett. B 822, 136665 (2021b), arXiv:2104.05139 [astro-ph.CO] .
  55. I. Magana Hernandez, Constraining the number of spacetime dimensions from GWTC-3 binary black hole mergers, arXiv e-prints , arXiv:2112.07650 (2021), arXiv:2112.07650 [astro-ph.HE] .
  56. I. Mandel, W. M. Farr, and J. R. Gair, Extracting distribution parameters from multiple uncertain observations with selection biases, Mon. Not. Roy. Astron. Soc. 486, 1086 (2019), arXiv:1809.02063 [physics.data-an] .
  57. S. Kullback and R. A. Leibler, On Information and Sufficiency, The Annals of Mathematical Statistics 22, 79 (1951).
  58. J. Golomb and C. Talbot, Hierarchical Inference of Binary Neutron Star Mass Distribution and Equation of State with Gravitational Waves, Astrophys. J. 926, 79 (2022), arXiv:2106.15745 [astro-ph.HE] .
  59. G. Pratten et al., Computationally efficient models for the dominant and subdominant harmonic modes of precessing binary black holes, Phys. Rev. D 103, 104056 (2021), arXiv:2004.06503 [gr-qc] .
  60. I. M. Romero-Shaw et al., Bayesian inference for compact binary coalescences with bilby: validation and application to the first LIGO–Virgo gravitational-wave transient catalogue, Mon. Not. Roy. Astron. Soc. 499, 3295 (2020c), arXiv:2006.00714 [astro-ph.IM] .
  61. B. Edelman, B. Farr, and Z. Doctor, Cover Your Basis: Comprehensive Data-driven Characterization of the Binary Black Hole Population, Astrophys. J. 946, 16 (2023), arXiv:2210.12834 [astro-ph.HE] .
  62. J. Golomb and C. Talbot, Searching for structure in the binary black hole spin distribution, Phys. Rev. D 108, 103009 (2023), arXiv:2210.12287 [astro-ph.HE] .
  63. C. Talbot and J. Golomb, Growing pains: understanding the impact of likelihood uncertainty on hierarchical Bayesian inference for gravitational-wave astronomy, Mon. Not. Roy. Astron. Soc. 526, 3495 (2023), arXiv:2304.06138 [astro-ph.IM] .
Citations (3)

Summary

We haven't generated a summary for this paper yet.