Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deeper Hedging: A New Agent-based Model for Effective Deep Hedging (2310.18755v1)

Published 28 Oct 2023 in q-fin.CP

Abstract: We propose the Chiarella-Heston model, a new agent-based model for improving the effectiveness of deep hedging strategies. This model includes momentum traders, fundamental traders, and volatility traders. The volatility traders participate in the market by innovatively following a Heston-style volatility signal. The proposed model generalises both the extended Chiarella model and the Heston stochastic volatility model, and is calibrated to reproduce as many empirical stylized facts as possible. According to the stylised facts distance metric, the proposed model is able to reproduce more realistic financial time series than three baseline models: the extended Chiarella model, the Heston model, and the Geometric Brownian Motion. The proposed model is further validated by the Generalized Subtracted L-divergence metric. With the proposed Chiarella-Heston model, we generate a training dataset to train a deep hedging agent for optimal hedging strategies under various transaction cost levels. The deep hedging agent employs the Deep Deterministic Policy Gradient algorithm and is trained to maximize profits and minimize risks. Our testing results reveal that the deep hedging agent, trained with data generated by our proposed model, outperforms the baseline in most transaction cost levels. Furthermore, the testing process, which is conducted using empirical data, demonstrates the effective performance of the trained deep hedging agent in a realistic trading environment.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.