Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Symmetries as Ground States of Local Superoperators: Hydrodynamic Implications (2309.15167v3)

Published 26 Sep 2023 in cond-mat.stat-mech, cond-mat.str-el, hep-th, math-ph, math.MP, and quant-ph

Abstract: Symmetry algebras of quantum many-body systems with locality can be understood using commutant algebras, which are defined as algebras of operators that commute with a given set of local operators. In this work, we show that these symmetry algebras can be expressed as frustration-free ground states of a local superoperator, which we refer to as a ``super-Hamiltonian". We demonstrate this for conventional symmetries such as $Z_2$, $U(1)$, and $SU(2)$, where the symmetry algebras map to various kinds of ferromagnetic ground states, as well as for unconventional ones that lead to weak ergodicity breaking phenomena of Hilbert space fragmentation and quantum many-body scars. In addition, we show that the low-energy excitations of this super-Hamiltonian can be understood as approximate symmetries, which in turn are related to slowly relaxing hydrodynamic modes in symmetric systems. This connection is made precise by relating the super-Hamiltonian to the superoperator that governs the operator relaxation in noisy symmetric Brownian circuits, and this physical interpretation also provides a novel interpretation for Mazur bounds for autocorrelation functions. We find examples of gapped/gapless super-Hamiltonians indicating the absence/presence of slow-modes, which happens in the presence of discrete/continuous symmetries. In the gapless cases, we recover hydrodynamic modes such as diffusion, tracer diffusion, and asymptotic scars in the presence of $U(1)$ symmetry, Hilbert space fragmentation, and a tower of quantum scars respectively. In all, this demonstrates the power of the commutant algebra framework in obtaining a comprehensive understanding of exact symmetries, and associated approximate symmetries and hydrodynamic modes, and their dynamical consequences in systems with locality.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube