2+1D symmetry-topological-order from local symmetric operators in 1+1D (2310.05790v1)
Abstract: A generalized symmetry (defined by the algebra of local symmetric operators) can go beyond group or higher group description. A theory of generalized symmetry (up to holo-equivalence) was developed in terms of symmetry-TO -- a bosonic topological order (TO) with gappable boundary in one higher dimension. We propose a general method to compute the 2+1D symmetry-TO from the local symmetric operators in 1+1D systems. Our theory is based on the commutant patch operators, which are extended operators constructed as products and sums of local symmetric operators. A commutant patch operator commutes with all local symmetric operators away from its boundary. We argue that topological invariants associated with anyon diagrams in 2+1D can be computed as contracted products of commutant patch operators in 1+1D. In particular, we give concrete formulae for several topological invariants in terms of commutant patch operators. Topological invariants computed from patch operators include those beyond modular data, such as the link invariants associated with the Borromean rings and the Whitehead link. These results suggest that the algebra of commutant patch operators is described by 2+1D symmetry-TO. Based on our analysis, we also argue briefly that the commutant patch operators would serve as order parameters for gapped phases with finite symmetries.
- X.-G. Wen, Topological Order in Rigid States, Int. J. Mod. Phys. B 4, 239 (1990).
- B. Zeng and X.-G. Wen, Gapped quantum liquids and topological order, stochastic local transformations and emergence of unitarity, Phys. Rev. B 91, 125121 (2015), arXiv:1406.5090 .
- B. Swingle and J. McGreevy, Renormalization group constructions of topological quantum liquids and beyond, Phys. Rev. B 93, 045127 (2016), arXiv:1407.8203 .
- M. Atiyah, Topological quantum field theories, Publications Mathématiques de l’Institut des Hautes Études Scientifiques 68, 175 (1988).
- E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121, 351 (1989).
- J. M. Leinaas and J. Myrheim, On the theory of identical particles, Nuovo Cim B 37, 1 (1977).
- F. Wilczek, Quantum mechanics of fractional-spin particles, Phys. Rev. Lett. 49, 957 (1982).
- B. I. Halperin, Statistics of quasiparticles and the hierarchy of fractional quantized Hall states, Phys. Rev. Lett. 52, 1583 (1984).
- D. Arovas, J. R. Schrieffer, and F. Wilczek, Fractional statistics and the quantum Hall effect, Phys. Rev. Lett. 53, 722 (1984).
- Y.-S. Wu, General theory for quantum statistics in two dimensions, Phys. Rev. Lett. 52, 2103 (1984).
- G. Moore and N. Seiberg, Classical and quantum conformal field theory, Commun.Math. Phys. 123, 177 (1989a).
- X.-G. Wen, A theory of 2+1D bosonic topological orders, Natl. Sci. Rev. 3, 68 (2016), arXiv:1506.05768 [cond-mat.str-el] .
- A. Kitaev, Anyons in an exactly solved model and beyond, Annals Phys. 321, 2 (2006), arXiv:cond-mat/0506438 .
- T. Lan, L. Kong, and X.-G. Wen, Classification of (3+1)D bosonic topological orders: the case when pointlike excitations are all bosons, Phys. Rev. X 8, 021074 (2018), arXiv:1704.04221 .
- T. Lan and X.-G. Wen, Classification of 3+1D bosonic topological orders (II): the case when some pointlike excitations are fermions, Phys. Rev. X 9, 021005 (2019), arXiv:1801.08530 .
- T. Johnson-Freyd, On the Classification of Topological Orders, Commun. Math. Phys. 393, 989 (2022), arXiv:2003.06663 [math.CT] .
- L. Kong and H. Zheng, Categories of quantum liquids I, J. High Energ. Phys. 2022 (8), 1, arXiv:2011.02859 .
- A. Chatterjee, W. Ji, and X.-G. Wen, Emergent maximal categorical symmetry in a gapless state (2022), arXiv:2212.14432 [cond-mat.str-el] .
- Z. Nussinov and G. Ortiz, Sufficient symmetry conditions for topological quantum order, Proc. Natl. Acad. Sci. U.S.A. 106, 16944 (2009a), arXiv:cond-mat/0605316 .
- Z. Nussinov and G. Ortiz, A symmetry principle for topological quantum order, Ann. Phys. 324, 977 (2009b), arXiv:cond-mat/0702377 .
- A. Kapustin and R. Thorngren, Higher symmetry and gapped phases of gauge theories (2013), arXiv:1309.4721 [hep-th] .
- C. Córdova, T. T. Dumitrescu, and K. Intriligator, Exploring 2-group global symmetries, Journal of High Energy Physics 2019, 184 (2019), arXiv:1802.04790 [hep-th] .
- F. Benini, C. Córdova, and P.-S. Hsin, On 2-group global symmetries and their anomalies, Journal of High Energy Physics 03, 118 (2019), arXiv:1803.09336 [hep-th] .
- E. P. Verlinde, Fusion Rules and Modular Transformations in 2D Conformal Field Theory, Nucl. Phys. B 300, 360 (1988).
- V. B. Petkova and J. B. Zuber, Generalized twisted partition functions, Phys. Lett. B 504, 157 (2001), arXiv:hep-th/0011021 .
- J. Fuchs, I. Runkel, and C. Schweigert, TFT construction of RCFT correlators I: Partition functions, Nucl. Phys. B 646, 353 (2002), arXiv:hep-th/0204148 .
- N. Carqueville and I. Runkel, Orbifold completion of defect bicategories, Quantum Topol. 7, 203 (2016), arXiv:1210.6363 [math.QA] .
- I. Brunner, N. Carqueville, and D. Plencner, Orbifolds and topological defects, Commun. Math. Phys. 332, 669 (2014), arXiv:1307.3141 [hep-th] .
- I. Brunner, N. Carqueville, and D. Plencner, Discrete torsion defects, Commun. Math. Phys. 337, 429 (2015), arXiv:1404.7497 [hep-th] .
- L. Bhardwaj and Y. Tachikawa, On finite symmetries and their gauging in two dimensions, Journal of High Energy Physics 03, 189 (2018), arXiv:1704.02330 [hep-th] .
- R. Thorngren and Y. Wang, Fusion Category Symmetry I: Anomaly In-Flow and Gapped Phases (2019), arXiv:1912.02817 [hep-th] .
- D. S. Freed, G. W. Moore, and C. Teleman, Topological symmetry in quantum field theory (2022), arXiv:2209.07471 [hep-th] .
- J. Kaidi, K. Ohmori, and Y. Zheng, Kramers-Wannier-like Duality Defects in (3+1)D Gauge Theories, Phys. Rev. Lett. 128, 111601 (2022), arXiv:2111.01141 [hep-th] .
- J. McGreevy, Generalized Symmetries in Condensed Matter, Annual Review of Condensed Matter Physics 14, 57 (2023), arXiv:2204.03045 [cond-mat.str-el] .
- S. Schäfer-Nameki, ICTP Lectures on (Non-)Invertible Generalized Symmetries (2023), arXiv:2305.18296 [hep-th] .
- T. D. Brennan and S. Hong, Introduction to Generalized Global Symmetries in QFT and Particle Physics (2023), arXiv:2306.00912 [hep-ph] .
- S.-H. Shao, What’s Done Cannot Be Undone: TASI Lectures on Non-Invertible Symmetry (2023), arXiv:2308.00747 [hep-th] .
- D. Fiorenza and A. Valentino, Boundary conditions for topological quantum field theories, anomalies and projective modular functors, Commun. Math. Phys. 338, 1043 (2015), arXiv:1409.5723 .
- S. Monnier, Hamiltonian anomalies from extended field theories, Commun. Math. Phys. 338, 1327 (2015), arXiv:1410.7442 .
- L. Kong, X.-G. Wen, and H. Zheng, Boundary-bulk relation for topological orders as the functor mapping higher categories to their centers (2015a), arXiv:1502.01690 .
- L. Kong, X.-G. Wen, and H. Zheng, Boundary-bulk relation in topological orders, Nucl. Phys. B 922, 62 (2017a), arXiv:1702.00673 .
- W. Ji and X.-G. Wen, Non-invertible anomalies and mapping-class-group transformation of anomalous partition functions, Phys. Rev. Research 1, 033054 (2019), arXiv:1905.13279 .
- W. Ji and X.-G. Wen, Categorical symmetry and noninvertible anomaly in symmetry-breaking and topological phase transitions, Phys. Rev. Res. 2, 033417 (2020), arXiv:1912.13492 [cond-mat.str-el] .
- A. Chatterjee, W. Ji, and X.-G. Wen, Emergent generalized symmetry and maximal symmetry-topological-order (2022), arXiv:2212.14432 .
- D. S. Freed, Introduction to topological symmetry in QFT (2022), arXiv:2212.00195 [hep-th] .
- A. Chatterjee and X.-G. Wen, Symmetry as a shadow of topological order and a derivation of topological holographic principle, Phys. Rev. B 107, 155136 (2023a), arXiv:2203.03596 [cond-mat.str-el] .
- C. Zhang and M. Levin, Exactly Solvable Model for a Deconfined Quantum Critical Point in 1D, Phys. Rev. Lett. 130, 026801 (2023), arXiv:2206.01222 .
- D. Gaiotto and J. Kulp, Orbifold groupoids, Journal of High Energy Physics 02, 132 (2021), arXiv:2008.05960 [hep-th] .
- D. Aasen, P. Fendley, and R. S. K. Mong, Topological Defects on the Lattice: Dualities and Degeneracies (2020), arXiv:2008.08598 [cond-mat.stat-mech] .
- H. Moradi, S. F. Moosavian, and A. Tiwari, Topological Holography: Towards a Unification of Landau and Beyond-Landau Physics (2022), arXiv:2207.10712 [cond-mat.str-el] .
- Y.-H. Lin and S.-H. Shao, Bootstrapping noninvertible symmetries, Phys. Rev. D 107, 125025 (2023), arXiv:2302.13900 [hep-th] .
- C. Zhang and C. Córdova, Anomalies of (1+1)D categorical symmetries (2023), arXiv:2304.01262 [cond-mat.str-el] .
- D. S. Freed and C. Teleman, Topological dualities in the Ising model, Geom. Topol. 26, 1907 (2022), arXiv:1806.00008 [math.AT] .
- T. Lan and J.-R. Zhou, Quantum current and holographic categorical symmetry (2023), arXiv:2305.12917 [cond-mat.str-el] .
- L. Lootens, C. Delcamp, and F. Verstraete, Dualities in one-dimensional quantum lattice models: topological sectors (2022), arXiv:2211.03777 [quant-ph] .
- R. Haag, Local Quantum Physics, 2nd ed., Theoretical and Mathematical Physics (Springer Berlin, Heidelberg, 1996).
- S. Doplicher, R. Haag, and J. E. Roberts, Local observables and particle statistics I, Commun. Math. Phys. 23, 199 (1971).
- S. Doplicher, R. Haag, and J. E. Roberts, Local observables and particle statistics II, Commun. Math. Phys. 35, 49 (1974).
- K. Szlachányi and P. Vecsernyés, Quantum symmetry and braid group statistics in G𝐺Gitalic_G-spin models, Commun. Math. Phys. 156, 127 (1993).
- F. Nill and K. Szlachányi, Quantum chains of Hopf algebras with quantum double cosymmetry, Commun. Math. Phys. 187, 159 (1997), arXiv:hep-th/9509100 .
- C. Jones, DHR bimodules of quasi-local algebras and symmetric quantum cellular automata (2023), arXiv:2304.00068 [math-ph] .
- L. Kong, X.-G. Wen, and H. Zheng, One dimensional gapped quantum phases and enriched fusion categories, Journal of High Energy Physics 03, 22 (2022), arXiv:2108.08835 [cond-mat.str-el] .
- R. Xu and Z.-H. Zhang, Categorical descriptions of 1-dimensional gapped phases with abelian onsite symmetries (2022), arXiv:2205.09656 [cond-mat.str-el] .
- G. W. Moore and N. Seiberg, Classical and Quantum Conformal Field Theory, Commun. Math. Phys. 123, 177 (1989b).
- M. Mignard and P. Schauenburg, Modular categories are not determined by their modular data (2021), arXiv:1708.02796 [math.QA] .
- C. Delaney and A. Tran, A systematic search of knot and link invariants beyond modular data (2018), arXiv:1806.02843 [math.QA] .
- A. Kulkarni, M. Mignard, and P. Schauenburg, A topological invariant for modular fusion categories (2021), arXiv:1806.03158 [math.QA] .
- X. Wen and X.-G. Wen, Distinguish modular categories and 2+1D topological orders beyond modular data: Mapping class group of higher genus manifold (2019), arXiv:1908.10381 [cond-mat.str-el] .
- C. Delaney, S. Kim, and J. Plavnik, Zesting produces modular isotopes and explains their topological invariants (2021), arXiv:2107.11374 [math.QA] .
- J. Fuchs, C. Schweigert, and A. Valentino, Bicategories for boundary conditions and for surface defects in 3-d TFT, Commun. Math. Phys. 321, 543 (2013), arXiv:1203.4568 [hep-th] .
- D. S. Freed and C. Teleman, Gapped Boundary Theories in Three Dimensions, Commun. Math. Phys. 388, 845 (2021), arXiv:2006.10200 [math.QA] .
- M. A. Levin and X.-G. Wen, String net condensation: A Physical mechanism for topological phases, Phys. Rev. B 71, 045110 (2005), arXiv:cond-mat/0404617 .
- V. G. Turaev and O. Y. Viro, State sum invariants of 3-manifolds and quantum 6j-symbols, Topology 31, 865 (1992).
- J. W. Barrett and B. W. Westbury, Invariants of piecewise linear three manifolds, Trans. Am. Math. Soc. 348, 3997 (1996), arXiv:hep-th/9311155 .
- A. Y. Kitaev, Fault tolerant quantum computation by anyons, Annals Phys. 303, 2 (2003), arXiv:quant-ph/9707021 .
- R. Dijkgraaf and E. Witten, Topological Gauge Theories and Group Cohomology, Commun. Math. Phys. 129, 393 (1990).
- Y. Hu, Y. Wan, and Y.-S. Wu, Twisted quantum double model of topological phases in two dimensions, Phys. Rev. B 87, 125114 (2013), arXiv:1211.3695 [cond-mat.str-el] .
- M. D. F. de Wild Propitius, Topological interactions in broken gauge theories, Ph.D. thesis, Amsterdam U. (1995), arXiv:hep-th/9511195 .
- A. Kapustin and N. Saulina, Topological boundary conditions in abelian Chern-Simons theory, Nucl. Phys. B 845, 393 (2011), arXiv:1008.0654 [hep-th] .
- A. Kitaev and L. Kong, Models for Gapped Boundaries and Domain Walls, Commun. Math. Phys. 313, 351 (2012), arXiv:1104.5047 [cond-mat.str-el] .
- T. Lan and X.-G. Wen, Topological quasiparticles and the holographic bulk-edge relation in (2+1)-dimensional string-net models, Phys. Rev. B 90, 115119 (2014), arXiv:1311.1784 [cond-mat.str-el] .
- L. Kong, X.-G. Wen, and H. Zheng, Boundary-bulk relation for topological orders as the functor mapping higher categories to their centers (2015b), arXiv:1502.01690 [cond-mat.str-el] .
- L. Kong, X.-G. Wen, and H. Zheng, Boundary-bulk relation in topological orders, Nuclear Physics B 922, 62 (2017b), arXiv:1702.00673 [cond-mat.str-el] .
- L. Kong, Anyon condensation and tensor categories, Nucl. Phys. B 886, 436 (2014), arXiv:1307.8244 [cond-mat.str-el] .
- L. Bhardwaj and S. Schäfer-Nameki, Generalized Charges, Part II: Non-Invertible Symmetries and the Symmetry TFT (2023), arXiv:2305.17159 [hep-th] .
- T. Bartsch, M. Bullimore, and A. Grigoletto, Representation theory for categorical symmetries (2023), arXiv:2305.17165 [hep-th] .
- A. Chatterjee and X.-G. Wen, Holographic theory for continuous phase transitions: Emergence and symmetry protection of gaplessness, Phys. Rev. B 108, 075105 (2023b), arXiv:2205.06244 [cond-mat.str-el] .
- D. V. Else, S. D. Bartlett, and A. C. Doherty, Hidden symmetry-breaking picture of symmetry-protected topological order, Phys. Rev. B 88, 085114 (2013), arXiv:1304.0783 [cond-mat.str-el] .
- H. Bombin and M. A. Martin-Delgado, A Family of Non-Abelian Kitaev Models on a Lattice: Topological Confinement and Condensation, Phys. Rev. B 78, 115421 (2008), arXiv:0712.0190 [cond-mat.str-el] .
- S. Beigi, P. W. Shor, and D. Whalen, The Quantum Double Model with Boundary: Condensations and Symmetries, Commun. Math. Phys. 306, 663 (2011), arXiv:1006.5479 [quant-ph] .