From Symmetries to Commutant Algebras in Standard Hamiltonians (2209.03370v2)
Abstract: In this work, we revisit several families of standard Hamiltonians that appear in the literature and discuss their symmetries and conserved quantities in the language of commutant algebras. In particular, we start with families of Hamiltonians defined by parts that are local, and study the algebra of operators that separately commute with each part. The families of models we discuss include the spin-1/2 Heisenberg model and its deformations, several types of spinless and spinful free-fermion models, and the Hubbard model. This language enables a decomposition of the Hilbert space into dynamically disconnected sectors that reduce to the conventional quantum number sectors for regular symmetries. In addition, we find examples of non-standard conserved quantities even in some simple cases, which demonstrates the need to enlarge the usual definitions of symmetries and conserved quantities. In the case of free-fermion models, this decomposition is related to the decompositions of Hilbert space via irreducible representations of certain Lie groups proposed in earlier works, while the algebra perspective applies more broadly, in particular also to arbitrary interacting models. Further, the von Neumann Double Commutant Theorem (DCT) enables a systematic construction of local operators with a given symmetry or commutant algebra, potentially eliminating the need for "brute-force" numerical searches carried out in the literature, and we show examples of such applications of the DCT. This paper paves the way for both systematic construction of families of models with exact scars and characterization of such families in terms of non-standard symmetries, pursued in a parallel paper.
- S. Moudgalya and O. I. Motrunich, Exhaustive Characterization of Quantum Many-Body Scars using Commutant Algebras, arXiv e-prints (2022), arXiv:2209.03377 [cond-mat.str-el] .
- S. Sachdev, Quantum phase transitions (Cambridge university press, 2011).
- E. Fradkin, Field theories of condensed matter physics (Cambridge University Press, 2013).
- T. Quella, Symmetry-protected topological phases beyond groups: The q𝑞qitalic_q-deformed affleck-kennedy-lieb-tasaki model, Phys. Rev. B 102, 081120 (2020).
- S. Moudgalya and O. I. Motrunich, Hilbert space fragmentation and commutant algebras, Phys. Rev. X 12, 011050 (2022).
- J. McGreevy, Generalized Symmetries in Condensed Matter, Annual Review of Condensed Matter Physics 14, 57 (2023), https://doi.org/10.1146/annurev-conmatphys-040721-021029 .
- M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nature Physics 17, 675 (2021).
- Z. Papić, Weak Ergodicity Breaking Through the Lens of Quantum Entanglement, in Entanglement in Spin Chains: From Theory to Quantum Technology Applications, edited by A. Bayat, S. Bose, and H. Johannesson (Springer International Publishing, Cham, 2022) pp. 341–395.
- S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars and hilbert space fragmentation: a review of exact results, Reports on Progress in Physics 85, 086501 (2022).
- V. Khemani, M. Hermele, and R. Nandkishore, Localization from Hilbert space shattering: From theory to physical realizations, Phys. Rev. B 101, 174204 (2020).
- J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991).
- M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
- M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
- B. Buča, J. Tindall, and D. Jaksch, Non-stationary coherent quantum many-body dynamics through dissipation, Nature Communications 10, 1730 (2019).
- M. Medenjak, B. Buča, and D. Jaksch, Isolated heisenberg magnet as a quantum time crystal, Phys. Rev. B 102, 041117 (2020).
- S. Moudgalya, N. Regnault, and B. A. Bernevig, η𝜂\etaitalic_η-pairing in Hubbard models: From spectrum generating algebras to quantum many-body scars, Phys. Rev. B 102, 085140 (2020).
- L.-H. Tang, N. O’Dea, and A. Chandran, Multimagnon quantum many-body scars from tensor operators, Phys. Rev. Res. 4, 043006 (2022).
- X.-L. Qi and D. Ranard, Determining a local Hamiltonian from a single eigenstate, Quantum 3, 159 (2019).
- E. Chertkov, B. Villalonga, and B. K. Clark, Engineering topological models with a general-purpose symmetry-to-hamiltonian approach, Phys. Rev. Research 2, 023348 (2020).
- D. K. Mark and O. I. Motrunich, η𝜂\etaitalic_η-pairing states as true scars in an extended Hubbard model, Phys. Rev. B 102, 075132 (2020).
- Z. Nussinov and G. Ortiz, Bond algebras and exact solvability of Hamiltonians: Spin S=12𝑆12{S}=\frac{1}{2}italic_S = divide start_ARG 1 end_ARG start_ARG 2 end_ARG multilayer systems, Phys. Rev. B 79, 214440 (2009).
- E. Cobanera, G. Ortiz, and Z. Nussinov, Unified approach to quantum and classical dualities, Phys. Rev. Lett. 104, 020402 (2010).
- E. Cobanera, G. Ortiz, and Z. Nussinov, The bond-algebraic approach to dualities, Advances in Physics 60, 679 (2011).
- D. Harlow, The Ryu–Takayanagi formula from quantum error correction, Communications in Mathematical Physics 354, 865 (2017).
- O. Kabernik, Reductions in finite-dimensional quantum mechanics: from symmetries to operator algebras and beyond (2021), arXiv:2103.08226 [quant-ph] .
- P. Zanardi, Virtual quantum subsystems, Phys. Rev. Lett. 87, 077901 (2001).
- W. Fulton and J. Harris, Representation theory: a first course, Vol. 129 (Springer Science & Business Media, 2013).
- C. N. Yang, η𝜂\etaitalic_η pairing and off-diagonal long-range order in a hubbard model, Phys. Rev. Lett. 63, 2144 (1989).
- A. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303, 2 (2003).
- A. Kitaev and C. Laumann, Topological phases and quantum computation, Exact Methods in Low-dimensional Statistical Physics and Quantum Computing: Lecture Notes of the Les Houches Summer School: Volume 89, July 2008 , 101 (2010).
- R. M. Nandkishore and M. Hermele, Fractons, Annual Review of Condensed Matter Physics 10, 295 (2019).
- M. Pretko, X. Chen, and Y. You, Fracton phases of matter, International Journal of Modern Physics A 35, 2030003 (2020).
- D. Poulin, Stabilizer formalism for operator quantum error correction, Phys. Rev. Lett. 95, 230504 (2005).
- D. Bacon, Operator quantum error-correcting subsystems for self-correcting quantum memories, Phys. Rev. A 73, 012340 (2006).
- C. Xu and J. E. Moore, Strong-weak coupling self-duality in the two-dimensional quantum phase transition of p+ip𝑝𝑖𝑝p+ipitalic_p + italic_i italic_p superconducting arrays, Phys. Rev. Lett. 93, 047003 (2004).
- J. Wildeboer, T. Iadecola, and D. J. Williamson, Symmetry-protected infinite-temperature quantum memory from subsystem codes, PRX Quantum 3, 020330 (2022).
- H. Georgi, Lie algebras in particle physics (Taylor & Francis, 2000).
- R. Gurau and J. P. Ryan, Colored Tensor Models - a Review, SIGMA 8, 020 (2012), arXiv:1109.4812 [hep-th] .
- I. R. Klebanov, F. Popov, and G. Tarnopolsky, TASI Lectures on Large N𝑁Nitalic_N Tensor Models, arXiv e-prints 10.48550/arXiv.1808.09434 (2018), arXiv:1808.09434 [hep-th] .
- E. Witten, An syk-like model without disorder, Journal of Physics A: Mathematical and Theoretical 52, 474002 (2019).
- V. Rosenhaus, An introduction to the syk model, Journal of Physics A: Mathematical and Theoretical 52, 323001 (2019).
- D. K. Mark, C.-J. Lin, and O. I. Motrunich, Unified structure for exact towers of scar states in the Affleck-Kennedy-Lieb-Tasaki and other models, Phys. Rev. B 101, 195131 (2020).
- C. N. Yang, Remarks and generalizations about su2×su2 symmetry of Hubbard models, Physics Letters A 161, 292 (1991).
- C. V. Kraus, M. M. Wolf, and J. I. Cirac, Quantum simulations under translational symmetry, Phys. Rev. A 75, 022303 (2007).
- R. Zeier and T. Schulte-Herbrüggen, Symmetry principles in quantum systems theory, Journal of Mathematical Physics 52, 113510 (2011).
- S. Moudgalya and O. I. Motrunich, (in preparation).
- J. Alicea and P. Fendley, Topological phases with parafermions: Theory and blueprints, Annual Review of Condensed Matter Physics 7, 119 (2016).
- P. Fendley, Strong zero modes and eigenstate phase transitions in the XYZ/interacting majorana chain, Journal of Physics A: Mathematical and Theoretical 49, 30LT01 (2016).
- S. Moudgalya and O. I. Motrunich, Numerical Methods for Detecting Symmetries and Commutant Algebras, arXiv e-prints (2023), arXiv:2302.03028 [cond-mat.str-el] .
- D. A. Lidar and K. Birgitta Whaley, Decoherence-free subspaces and subsystems, in Irreversible Quantum Dynamics, edited by F. Benatti and R. Floreanini (Springer Berlin Heidelberg, Berlin, Heidelberg, 2003) pp. 83–120.
- J. A. Holbrook, D. W. Kribs, and R. Laflamme, Noiseless subsystems and the structure of the commutant in quantum error correction, Quantum Information Processing 2, 381 (2003).
- H. E. Haber, Useful relations among the generators in the defining and adjoint representations of SU(N), SciPost Phys. Lect. Notes , 21 (2021).
- C. N. Yang and S. C. Zhang, So(4) symmetry in a hubbard model, in Selected Papers of Chen Ning Yang II, pp. 154–161.
- K. Fujii, H. Oike, and T. Suzuki, More on the isomorphism su(2)⊗su(2)≅so(4)tensor-product𝑠𝑢2𝑠𝑢2𝑠𝑜4su(2)\otimes su(2)\cong so(4)italic_s italic_u ( 2 ) ⊗ italic_s italic_u ( 2 ) ≅ italic_s italic_o ( 4 ), International Journal of Geometric Methods in Modern Physics 04, 471 (2007).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.