Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Numerical Methods for Detecting Symmetries and Commutant Algebras (2302.03028v2)

Published 6 Feb 2023 in cond-mat.str-el, cond-mat.stat-mech, and quant-ph

Abstract: For families of Hamiltonians defined by parts that are local, the most general definition of a symmetry algebra is the commutant algebra, i.e., the algebra of operators that commute with each local part. Thinking about symmetry algebras as commutant algebras allows for the treatment of conventional symmetries and unconventional symmetries (e.g., those responsible for weak ergodicity breaking phenomena) on equal algebraic footing. In this work, we discuss two methods for numerically constructing this commutant algebra starting from a family of Hamiltonians. First, we use the equivalence of this problem to that of simultaneous block-diagonalization of a given set of local operators, and discuss a probabilistic method that has been found to work with probability 1 for both Abelian and non-Abelian symmetries or commutant algebras. Second, we map this problem onto the problem of determining frustration-free ground states of certain Hamiltonians, and we use ideas from tensor network algorithms to efficiently solve this problem in one dimension. These numerical methods are useful in detecting standard and non-standard conserved quantities in families of Hamiltonians, which includes examples of regular symmetries, Hilbert space fragmentation, and quantum many-body scars, and we show many such examples. In addition, they are necessary for verifying several conjectures on the structure of the commutant algebras in these cases, which we have put forward in earlier works. Finally, we also discuss similar methods for the inverse problem of determining local operators with a given symmetry or commutant algebra, which connects to existing methods in the literature. A special case of this construction reduces to well-known ``Eigenstate to Hamiltonian" methods for constructing Hermitian local operators that have a given state as an eigenstate.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. S. Moudgalya and O. I. Motrunich, Hilbert space fragmentation and commutant algebras, Phys. Rev. X 12, 011050 (2022).
  2. S. Moudgalya and O. I. Motrunich, From Symmetries to Commutant Algebras in Standard Hamiltonians, arXiv e-prints  (2022a), arXiv:2209.03370 [cond-mat.str-el] .
  3. S. Moudgalya and O. I. Motrunich, Exhaustive Characterization of Quantum Many-Body Scars using Commutant Algebras, arXiv e-prints  (2022b), arXiv:2209.03377 [cond-mat.str-el] .
  4. S. Sachdev, Quantum phase transitions (Cambridge university press, 2011).
  5. E. Fradkin, Field theories of condensed matter physics (Cambridge University Press, 2013).
  6. D. Aasen, R. S. K. Mong, and P. Fendley, Topological defects on the lattice: I. the ising model, Journal of Physics A: Mathematical and Theoretical 49, 354001 (2016).
  7. D. Aasen, P. Fendley, and R. S. K. Mong, Topological Defects on the Lattice: Dualities and Degeneracies, arXiv e-prints  (2020), arXiv:2008.08598 [cond-mat.stat-mech] .
  8. T. Quella, Symmetry-protected topological phases beyond groups: The q𝑞qitalic_q-deformed affleck-kennedy-lieb-tasaki model, Phys. Rev. B 102, 081120 (2020).
  9. A. Chatterjee and X.-G. Wen, Algebra of local symmetric operators and braided fusion n𝑛nitalic_n-category – symmetry is a shadow of topological order, arXiv e-prints  (2022), arXiv:2203.03596 [cond-mat.str-el] .
  10. J. McGreevy, Generalized Symmetries in Condensed Matter, Annual Review of Condensed Matter Physics 14, 57 (2023), https://doi.org/10.1146/annurev-conmatphys-040721-021029 .
  11. M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nature Physics 17, 675 (2021).
  12. Z. Papić, Weak Ergodicity Breaking Through the Lens of Quantum Entanglement, in Entanglement in Spin Chains: From Theory to Quantum Technology Applications, edited by A. Bayat, S. Bose, and H. Johannesson (Springer International Publishing, Cham, 2022) pp. 341–395.
  13. S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars and hilbert space fragmentation: a review of exact results, Reports on Progress in Physics 85, 086501 (2022).
  14. K. Sengupta, Phases and dynamics of ultracold bosons in a tilted optical lattice, in Entanglement in Spin Chains: From Theory to Quantum Technology Applications, edited by A. Bayat, S. Bose, and H. Johannesson (Springer International Publishing, Cham, 2022) pp. 425–458.
  15. Z. Nussinov and G. Ortiz, Bond algebras and exact solvability of Hamiltonians: Spin S=12𝑆12{S}=\frac{1}{2}italic_S = divide start_ARG 1 end_ARG start_ARG 2 end_ARG multilayer systems, Phys. Rev. B 79, 214440 (2009).
  16. P. Zanardi, G. Styliaris, and L. Campos Venuti, Coherence-generating power of quantum unitary maps and beyond, Phys. Rev. A 95, 052306 (2017).
  17. F. Andreadakis and P. Zanardi, Coherence generation, symmetry algebras and Hilbert space fragmentation, arXiv e-prints  (2022), arXiv:2212.14408 [quant-ph] .
  18. J. A. Holbrook, D. W. Kribs, and R. Laflamme, Noiseless subsystems and the structure of the commutant in quantum error correction, Quantum Information Processing 2, 381 (2003).
  19. M.-D. Choi and D. W. Kribs, Method to find quantum noiseless subsystems, Phys. Rev. Lett. 96, 050501 (2006).
  20. X. Wang, M. Byrd, and K. Jacobs, Numerical method for finding decoherence-free subspaces and its applications, Phys. Rev. A 87, 012338 (2013).
  21. E. Chertkov, B. Villalonga, and B. K. Clark, Engineering topological models with a general-purpose symmetry-to-hamiltonian approach, Phys. Rev. Research 2, 023348 (2020).
  22. L. Nie, Operator Growth and Symmetry-Resolved Coefficient Entropy in Quantum Maps, arXiv e-prints  (2021), arXiv:2111.08729 [cond-mat.stat-mech] .
  23. D. Bondarenko, Constructing k-local parent Lindbladians for matrix product density operators, arXiv e-prints  (2021), arXiv:2110.13134 [quant-ph] .
  24. T. Maehara and K. Murota, A numerical algorithm for block-diagonal decomposition of matrix *-algebras with general irreducible components, Japan Journal of Industrial and Applied Mathematics 27, 263 (2010).
  25. X.-L. Qi and D. Ranard, Determining a local Hamiltonian from a single eigenstate, Quantum 3, 159 (2019).
  26. E. Chertkov and B. K. Clark, Computational inverse method for constructing spaces of quantum models from wave functions, Phys. Rev. X 8, 031029 (2018).
  27. M. Yang, B. Vanhecke, and N. Schuch, Detecting emergent continuous symmetries at quantum criticality, arXiv e-prints  (2022), arXiv:2210.17539 [cond-mat.str-el] .
  28. M. Greiter, V. Schnells, and R. Thomale, Method to identify parent hamiltonians for trial states, Phys. Rev. B 98, 081113 (2018).
  29. M. Dalmonte, B. Vermersch, and P. Zoller, Quantum simulation and spectroscopy of entanglement hamiltonians, Nature Physics 14, 827 (2018).
  30. K. Pakrouski, Automatic design of Hamiltonians, Quantum 4, 315 (2020).
  31. E. Bairey, I. Arad, and N. H. Lindner, Learning a local hamiltonian from local measurements, Phys. Rev. Lett. 122, 020504 (2019).
  32. X. Turkeshi and M. Dalmonte, Parent Hamiltonian reconstruction of Jastrow-Gutzwiller wavefunctions, SciPost Phys. 8, 042 (2020).
  33. D. Harlow, The Ryu–Takayanagi Formula from Quantum Error Correction, Communications in Mathematical Physics 354, 865 (2017).
  34. O. Kabernik, Reductions in finite-dimensional quantum mechanics: from symmetries to operator algebras and beyond, arXiv e-prints  (2021), arXiv:2103.08226 [quant-ph] .
  35. P. Zanardi, Virtual quantum subsystems, Phys. Rev. Lett. 87, 077901 (2001).
  36. W. Fulton and J. Harris, Representation theory: a first course, Vol. 129 (Springer Science & Business Media, 2013).
  37. D. K. Mark, C.-J. Lin, and O. I. Motrunich, Unified structure for exact towers of scar states in the Affleck-Kennedy-Lieb-Tasaki and other models, Phys. Rev. B 101, 195131 (2020).
  38. A. A. Ziolkowska and F. H. Essler, Yang-Baxter integrable Lindblad equations, SciPost Phys. 8, 44 (2020).
  39. U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Annals of Physics 326, 96 (2011), january 2011 Special Issue.
  40. F. Schindler and A. S. Jermyn, Algorithms for tensor network contraction ordering, Machine Learning: Science and Technology 1, 035001 (2020).
  41. C. D. Batista and G. Ortiz, Quantum phase diagram of the t−Jz𝑡subscript𝐽𝑧\mathit{t}-{J}_{z}italic_t - italic_J start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT chain model, Phys. Rev. Lett. 85, 4755 (2000).
  42. N. Shiraishi and T. Mori, Systematic construction of counterexamples to the eigenstate thermalization hypothesis, Phys. Rev. Lett. 119, 030601 (2017).
  43. M. Schecter and T. Iadecola, Weak Ergodicity Breaking and Quantum Many-Body Scars in Spin-1 X⁢Y𝑋𝑌XYitalic_X italic_Y Magnets, Phys. Rev. Lett. 123, 147201 (2019).
  44. D. K. Mark and O. I. Motrunich, η𝜂\etaitalic_η-pairing states as true scars in an extended Hubbard model, Phys. Rev. B 102, 075132 (2020).
  45. C. N. Yang, η𝜂\etaitalic_η pairing and off-diagonal long-range order in a hubbard model, Phys. Rev. Lett. 63, 2144 (1989).
  46. O. Vafek, N. Regnault, and B. A. Bernevig, Entanglement of exact excited eigenstates of the Hubbard model in arbitrary dimension, SciPost Phys. 3, 043 (2017).
  47. S. Moudgalya, N. Regnault, and B. A. Bernevig, η𝜂\etaitalic_η-pairing in Hubbard models: From spectrum generating algebras to quantum many-body scars, Phys. Rev. B 102, 085140 (2020b).
  48. J. Ren, C. Liang, and C. Fang, Deformed symmetry structures and quantum many-body scar subspaces, Phys. Rev. Research 4, 013155 (2022).
  49. N. Schuch, I. Cirac, and D. Pérez-García, Peps as ground states: Degeneracy and topology, Annals of Physics 325, 2153 (2010).
  50. S. Moudgalya and O. I. Motrunich,   (in preparationa).
  51. J. Alicea and P. Fendley, Topological phases with parafermions: Theory and blueprints, Annual Review of Condensed Matter Physics 7, 119 (2016).
  52. P. Fendley, Strong zero modes and eigenstate phase transitions in the XYZ/interacting majorana chain, Journal of Physics A: Mathematical and Theoretical 49, 30LT01 (2016).
  53. N. Regnault and B. A. Bernevig, Integer characteristic polynomial factorization and Hilbert space fragmentation, arXiv e-prints  (2022), arXiv:2210.08019 [cond-mat.stat-mech] .
  54. S. Moudgalya and O. I. Motrunich,   (in preparationb).
  55. G. M. Crosswhite and D. Bacon, Finite automata for caching in matrix product algorithms, Phys. Rev. A 78, 012356 (2008).
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.