Interfaces and Quantum Algebras, II: Cigar Partition Function (2306.16434v1)
Abstract: The supersymmetric cigar (half-)index or cigar partition function of 3d $\mathcal{N}=2$ gauge theories contains a wealth of information. Physically, it captures the spectrum of BPS states, the non-perturbative corrections to various partition functions, the effective twisted superpotential and the data of supersymmetric vacua. Mathematically, it defines the K-theoretic Vertex counting vortices/quasimaps, and connects to quantum K-theory, as well as elliptic cohomology and stable envelopes. We explore these topics from the physics standpoint, systematically developing the foundations and explaining various mathematical properties using the quantum field theory machinery.
- M. Dedushenko and N. Nekrasov, “Interfaces and Quantum Algebras, I: Stable Envelopes,” arXiv:2109.10941 [hep-th].
- D. Maulik and A. Okounkov, “Quantum Groups and Quantum Cohomology,” arXiv:1211.1287 [math.AG].
- M. Aganagic and A. Okounkov, “Elliptic stable envelopes,” arXiv:1604.00423 [math.AG].
- M. Bullimore and D. Zhang, “3d 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 Gauge Theories on an Elliptic Curve,” SciPost Phys. 13 no. 1, (2022) 005, arXiv:2109.10907 [hep-th].
- L. Baulieu, A. Losev, and N. Nekrasov, “Chern-Simons and twisted supersymmetry in various dimensions,” Nucl. Phys. B 522 (1998) 82–104, arXiv:hep-th/9707174.
- H. Jockers and P. Mayr, “A 3d Gauge Theory/Quantum K-Theory Correspondence,” Adv. Theor. Math. Phys. 24 no. 2, (2020) 327–457, arXiv:1808.02040 [hep-th].
- D. Gaiotto, G. W. Moore, and E. Witten, “Algebra of the Infrared: String Field Theoretic Structures in Massive 𝒩=(2,2)𝒩22{\cal N}=(2,2)caligraphic_N = ( 2 , 2 ) Field Theory In Two Dimensions,” arXiv:1506.04087 [hep-th].
- E. Witten, “Elliptic Genera and Quantum Field Theory,” Commun. Math. Phys. 109 (1987) 525.
- C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli, and B. C. van Rees, “Infinite Chiral Symmetry in Four Dimensions,” Commun. Math. Phys. 336 no. 3, (2015) 1359–1433, arXiv:1312.5344 [hep-th].
- M. Dedushenko, S. Gukov, and P. Putrov, “Vertex algebras and 4-manifold invariants,” in Proceedings, Nigel Hitchin’s 70th Birthday Conference : Geometry and Physics : A Festschrift in honour of Nigel Hitchin : 2 volumes: Aarhus, Denmark, Oxford, UK, Madrid, Spain, September 5-16, 2016, vol. 1, pp. 249–318. 2018. arXiv:1705.01645 [hep-th].
- A. B. Givental, “Equivariant Gromov - Witten Invariants,” arXiv e-prints (Mar., 1996) alg–geom/9603021, arXiv:alg-geom/9603021 [math.AG].
- S. Cecotti and C. Vafa, “Topological antitopological fusion,” Nucl. Phys. B 367 (1991) 359–461.
- V. G. Knizhnik and A. B. Zamolodchikov, “Current Algebra and Wess-Zumino Model in Two-Dimensions,” Nucl. Phys. B 247 (1984) 83–103.
- D. Bernard, “On the Wess-Zumino-Witten Models on the Torus,” Nucl. Phys. B303 (1988) 77–93.
- A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, “Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory,” Nucl. Phys. B 241 (1984) 333–380.
- A. Braverman, D. Maulik, and A. Okounkov, “Quantum cohomology of the Springer resolution,” arXiv:1001.0056 [math.AG].
- N. Nekrasov, “BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and qq-characters,” JHEP 03 (2016) 181, arXiv:1512.05388 [hep-th].
- N. Nekrasov, “BPS/CFT correspondence V: BPZ and KZ equations from qq-characters,” arXiv:1711.11582 [hep-th].
- N. Nekrasov and A. Tsymbaliuk, “Surface defects in gauge theory and KZ equation,” Lett. Math. Phys. 112 no. 2, (2022) 28, arXiv:2103.12611 [hep-th].
- A. Losev and Y. Manin, “New modular spaces of pointed curves and pencils of flat connections,” arXiv:math/0001003.
- B. Dubrovin, “Integrable systems in topological field theory,” Nucl. Phys. B 379 (1992) 627–689.
- C. Closset, T. T. Dumitrescu, G. Festuccia, and Z. Komargodski, “Supersymmetric Field Theories on Three-Manifolds,” JHEP 05 (2013) 017, arXiv:1212.3388 [hep-th].
- A. Gadde, S. Gukov, and P. Putrov, “Walls, Lines, and Spectral Dualities in 3d Gauge Theories,” JHEP 05 (2014) 047, arXiv:1302.0015 [hep-th].
- T. Dimofte, D. Gaiotto, and N. M. Paquette, “Dual boundary conditions in 3d SCFT’s,” JHEP 05 (2018) 060, arXiv:1712.07654 [hep-th].
- J. Gomis and S. Lee, “Exact Kahler Potential from Gauge Theory and Mirror Symmetry,” JHEP 04 (2013) 019, arXiv:1210.6022 [hep-th].
- C. Closset, H. Kim, and B. Willett, “Supersymmetric partition functions and the three-dimensional A-twist,” JHEP 03 (2017) 074, arXiv:1701.03171 [hep-th].
- F. Benini and A. Zaffaroni, “A topologically twisted index for three-dimensional supersymmetric theories,” JHEP 07 (2015) 127, arXiv:1504.03698 [hep-th].
- A. Okounkov, “Lectures on K-theoretic computations in enumerative geometry,” arXiv:1512.07363 [math.AG].
- S. Crew, D. Zhang, and A. Zhao, “To appear,”.
- S. B. Bradlow, “Special metrics and stability for holomorphic bundles with global sections,” Journal of Differential Geometry 33 no. 1, (1991) 169 – 213. https://doi.org/10.4310/jdg/1214446034.
- A. Losev, N. Nekrasov, and S. L. Shatashvili, “The Freckled instantons,” arXiv:hep-th/9908204.
- I. Ciocan-Fontanine, B. Kim, and D. Maulik, “Stable quasimaps to GIT quotients,” Journal of Geometry and Physics 75 (2014) 17–47, arXiv:1106.3724 [math.AG].
- S. Shadchin, “On F-term contribution to effective action,” JHEP 08 (2007) 052, arXiv:hep-th/0611278.
- T. Dimofte, S. Gukov, and L. Hollands, “Vortex Counting and Lagrangian 3-manifolds,” Lett. Math. Phys. 98 (2011) 225–287, arXiv:1006.0977 [hep-th].
- G. Bonelli, A. Tanzini, and J. Zhao, “Vertices, Vortices and Interacting Surface Operators,” JHEP 06 (2012) 178, arXiv:1102.0184 [hep-th].
- G. Bonelli, A. Sciarappa, A. Tanzini, and P. Vasko, “Vortex partition functions, wall crossing and equivariant Gromov-Witten invariants,” Commun. Math. Phys. 333 no. 2, (2015) 717–760, arXiv:1307.5997 [hep-th].
- C. Beem, T. Dimofte, and S. Pasquetti, “Holomorphic Blocks in Three Dimensions,” JHEP 12 (2014) 177, arXiv:1211.1986 [hep-th].
- S. Gukov, D. Pei, P. Putrov, and C. Vafa, “BPS spectra and 3-manifold invariants,” J. Knot Theor. Ramifications 29 no. 02, (2020) 2040003, arXiv:1701.06567 [hep-th].
- S. Cecotti, A. Neitzke, and C. Vafa, “R-Twisting and 4d/2d Correspondences,” arXiv:1006.3435 [hep-th].
- C. Closset, T. T. Dumitrescu, G. Festuccia, and Z. Komargodski, “The Geometry of Supersymmetric Partition Functions,” JHEP 01 (2014) 124, arXiv:1309.5876 [hep-th].
- M. Aganagic, E. Frenkel, and A. Okounkov, “Quantum q𝑞qitalic_q-Langlands Correspondence,” Trans. Moscow Math. Soc. 79 (2018) 1–83, arXiv:1701.03146 [hep-th].
- A. Tanaka, H. Mori, and T. Morita, “Superconformal index on RP2×S1𝑅superscript𝑃2superscript𝑆1\mathbb{RP}^{2}\times\mathbb{S}^{1}italic_R italic_P start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT × italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT and mirror symmetry,” Phys. Rev. D 91 (2015) 105023, arXiv:1408.3371 [hep-th].
- Y. Imamura and S. Yokoyama, “Index for three dimensional superconformal field theories with general R-charge assignments,” JHEP 04 (2011) 007, arXiv:1101.0557 [hep-th].
- G. Festuccia and N. Seiberg, “Rigid Supersymmetric Theories in Curved Superspace,” JHEP 06 (2011) 114, arXiv:1105.0689 [hep-th].
- A. Kapustin and B. Willett, “Generalized Superconformal Index for Three Dimensional Field Theories,” arXiv:1106.2484 [hep-th].
- R. Brooks and S. J. Gates, Jr., “Extended supersymmetry and superBF gauge theories,” Nucl. Phys. B 432 (1994) 205–224, arXiv:hep-th/9407147.
- A. Kapustin and M. J. Strassler, “On mirror symmetry in three-dimensional Abelian gauge theories,” JHEP 04 (1999) 021, arXiv:hep-th/9902033.
- M. Bullimore, S. Crew, and D. Zhang, “Boundaries, Vermas, and Factorisation,” arXiv:2010.09741 [hep-th].
- S. Cecotti, D. Gaiotto, and C. Vafa, “tt*𝑡superscript𝑡tt^{*}italic_t italic_t start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT geometry in 3 and 4 dimensions,” JHEP 05 (2014) 055, arXiv:1312.1008 [hep-th].
- N. A. Nekrasov and S. L. Shatashvili, “Bethe/Gauge correspondence on curved spaces,” JHEP 01 (2015) 100, arXiv:1405.6046 [hep-th].
- F. Benini and A. Zaffaroni, “Supersymmetric partition functions on Riemann surfaces,” Proc. Symp. Pure Math. 96 (2017) 13–46, arXiv:1605.06120 [hep-th].
- C. Closset and H. Kim, “Comments on twisted indices in 3d supersymmetric gauge theories,” JHEP 08 (2016) 059, arXiv:1605.06531 [hep-th].
- M. Bullimore and A. Ferrari, “Twisted Hilbert Spaces of 3d Supersymmetric Gauge Theories,” JHEP 08 (2018) 018, arXiv:1802.10120 [hep-th].
- M. Bullimore, A. Ferrari, and H. Kim, “Twisted indices of 3d 𝒩𝒩\mathcal{N}caligraphic_N = 4 gauge theories and enumerative geometry of quasi-maps,” JHEP 07 (2019) 014, arXiv:1812.05567 [hep-th].
- D. R. Morrison and M. R. Plesser, “Summing the instantons: Quantum cohomology and mirror symmetry in toric varieties,” Nucl. Phys. B 440 (1995) 279–354, arXiv:hep-th/9412236.
- K. Hori and C. Vafa, “Mirror symmetry,” arXiv:hep-th/0002222.
- F. Benini and S. Cremonesi, “Partition Functions of 𝒩=(2,2)𝒩22{\mathcal{N}=(2,2)}caligraphic_N = ( 2 , 2 ) Gauge Theories on S22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT and Vortices,” Commun. Math. Phys. 334 no. 3, (2015) 1483–1527, arXiv:1206.2356 [hep-th].
- N. Doroud, J. Gomis, B. Le Floch, and S. Lee, “Exact Results in D=2 Supersymmetric Gauge Theories,” JHEP 05 (2013) 093, arXiv:1206.2606 [hep-th].
- M. Fujitsuka, M. Honda, and Y. Yoshida, “Higgs branch localization of 3d 𝒩𝒩\mathscr{N}script_N = 2 theories,” PTEP 2014 no. 12, (2014) 123B02, arXiv:1312.3627 [hep-th].
- F. Benini and W. Peelaers, “Higgs branch localization in three dimensions,” JHEP 05 (2014) 030, arXiv:1312.6078 [hep-th].
- B. Kim, “Stable quasimaps to holomorphic symplectic quotients,” Adv. Stud. Pure Math. 71 (2016) 139–160, arXiv:1005.4125.
- E. Gonzalez and C. Woodward, “Gauged Gromov-Witten theory for small spheres,” arXiv:0907.3869 [math.SG].
- S. Hyun, J. Park, and J.-S. Park, “Spin-c Topological QCD,” Nucl. Phys. B 453 (1995) 199–224, arXiv:hep-th/9503201.
- A. Losev, N. Nekrasov, and S. L. Shatashvili, “Issues in topological gauge theory,” Nucl. Phys. B 534 (1998) 549–611, arXiv:hep-th/9711108.
- A. Okounkov and A. Smirnov, “Quantum difference equation for Nakajima varieties,” arXiv:1602.09007 [math-ph].
- A. Okounkov, “Nonabelian stable envelopes, vertex functions with descendents, and integral solutions of q𝑞qitalic_q-difference equations,” arXiv:2010.13217 [math.AG].
- E. Witten, “Two-dimensional gauge theories revisited,” J. Geom. Phys. 9 (1992) 303–368, arXiv:hep-th/9204083.
- G. W. Moore, N. Nekrasov, and S. Shatashvili, “Integrating over Higgs branches,” Commun. Math. Phys. 209 (2000) 97–121, arXiv:hep-th/9712241.
- A. Lossev, N. Nekrasov, and S. L. Shatashvili, “Testing Seiberg-Witten solution,” NATO Sci. Ser. C 520 (1999) 359–372, arXiv:hep-th/9801061.
- N. A. Nekrasov, “Seiberg-Witten prepotential from instanton counting,” Adv. Theor. Math. Phys. 7 no. 5, (2003) 831–864, arXiv:hep-th/0206161 [hep-th].
- N. Nekrasov and V. Pestun, “Seiberg-Witten geometry of four dimensional N=2 quiver gauge theories,” arXiv:1211.2240 [hep-th].
- A. Hanany and D. Tong, “Vortices, instantons and branes,” JHEP 07 (2003) 037, arXiv:hep-th/0306150.
- A. Hanany and D. Tong, “Vortex strings and four-dimensional gauge dynamics,” JHEP 04 (2004) 066, arXiv:hep-th/0403158.
- C. Closset and H. Kim, “Three-dimensional 𝒩𝒩\mathscr{N}script_N = 2 supersymmetric gauge theories and partition functions on Seifert manifolds: A review,” Int. J. Mod. Phys. A 34 no. 23, (2019) 1930011, arXiv:1908.08875 [hep-th].
- M. Bullimore, T. Dimofte, D. Gaiotto, J. Hilburn, and H.-C. Kim, “Vortices and Vermas,” Adv. Theor. Math. Phys. 22 (2018) 803–917, arXiv:1609.04406 [hep-th].
- M. Bullimore, A. E. V. Ferrari, and H. Kim, “The 3d twisted index and wall-crossing,” SciPost Phys. 12 no. 6, (2022) 186, arXiv:1912.09591 [hep-th].
- M. Bullimore, A. E. V. Ferrari, H. Kim, and G. Xu, “The twisted index and topological saddles,” JHEP 05 (2022) 116, arXiv:2007.11603 [hep-th].
- M. Bullimore, A. E. V. Ferrari, and H. Kim, “Supersymmetric Ground States of 3d 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 Gauge Theories on a Riemann Surface,” SciPost Phys. 12 no. 2, (2022) 072, arXiv:2105.08783 [hep-th].
- M. Bershadsky, A. Johansen, V. Sadov, and C. Vafa, “Topological reduction of 4-d SYM to 2-d sigma models,” Nucl. Phys. B 448 (1995) 166–186, arXiv:hep-th/9501096.
- T. Okazaki, “Abelian mirror symmetry of 𝒩𝒩\mathcal{N}caligraphic_N = (2, 2) boundary conditions,” JHEP 03 (2021) 163, arXiv:2010.13177 [hep-th].
- Y. Yoshida and K. Sugiyama, “Localization of three-dimensional 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 supersymmetric theories on S1×D2superscript𝑆1superscript𝐷2S^{1}\times D^{2}italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT × italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT,” PTEP 2020 no. 11, (2020) 113B02, arXiv:1409.6713 [hep-th].
- M. Bullimore, T. Dimofte, D. Gaiotto, and J. Hilburn, “Boundaries, Mirror Symmetry, and Symplectic Duality in 3d 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 Gauge Theory,” JHEP 10 (2016) 108, arXiv:1603.08382 [hep-th].
- T. Okazaki, “Abelian dualities of 𝒩=(0,4)𝒩04\mathcal{N}=(0,4)caligraphic_N = ( 0 , 4 ) boundary conditions,” JHEP 08 (2019) 170, arXiv:1905.07425 [hep-th].
- R. Rimányi, A. Smirnov, Z. Zhou, and A. Varchenko, “Three-Dimensional Mirror Symmetry and Elliptic Stable Envelopes,” Int. Math. Res. Not. 2022 no. 13, (2022) 10016–10094, arXiv:1902.03677 [math.AG].
- A. Smirnov and H. Dinkins, “Characters of tangent spaces at torus fixed points and 3d-mirror symmetry,” Lett. Math. Phys. 110 no. 9, (2020) 2337–2352, arXiv:1908.01199 [math.AG].
- A. Smirnov and Z. Zhou, “3d mirror symmetry and quantum K-theory of hypertoric varieties,” Adv. Math. 395 (2022) 108081, arXiv:2006.00118 [math.AG].
- H. Dinkins and A. Smirnov, “Euler characteristic of stable envelopes,” Selecta Math. 28 no. 4, (2022) 72, arXiv:2108.07202 [math.AG].
- Y. Kononov and A. Smirnov, “Pursuing quantum difference equations II: 3D-mirror symmetry,” arXiv:2008.06309 [math.AG].
- M. Dedushenko, “Remarks on Berry Connection in QFT, Anomalies, and Applications,” arXiv:2211.15680 [hep-th].
- K. Maruyoshi and J. Yagi, “Surface defects as transfer matrices,” PTEP 2016 no. 11, (2016) 113B01, arXiv:1606.01041 [hep-th].
- Y. Ito and Y. Yoshida, “Superconformal index with surface defects for class 𝒮ksubscript𝒮𝑘{\cal S}_{k}caligraphic_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT,” Nucl. Phys. B 962 (2021) 115277, arXiv:1606.01653 [hep-th].
- D. Gaiotto, S. Gukov, and N. Seiberg, “Surface Defects and Resolvents,” JHEP 09 (2013) 070, arXiv:1307.2578 [hep-th].
- S. Gukov and E. Witten, “Gauge Theory, Ramification, And The Geometric Langlands Program,” arXiv:hep-th/0612073.
- S. Gukov and E. Witten, “Rigid Surface Operators,” Adv. Theor. Math. Phys. 14 no. 1, (2010) 87–178, arXiv:0804.1561 [hep-th].
- D. Gaiotto, “Surface Operators in N = 2 4d Gauge Theories,” JHEP 11 (2012) 090, arXiv:0911.1316 [hep-th].
- D. Gaiotto, L. Rastelli, and S. S. Razamat, “Bootstrapping the superconformal index with surface defects,” JHEP 01 (2013) 022, arXiv:1207.3577 [hep-th].
- A. Gadde and S. Gukov, “2d Index and Surface operators,” JHEP 03 (2014) 080, arXiv:1305.0266 [hep-th].
- Y. Nakayama, “4D and 2D superconformal index with surface operator,” JHEP 08 (2011) 084, arXiv:1105.4883 [hep-th].
- Y. Chen, M. Heydeman, Y. Wang, and M. Zhang, “Probing Supersymmetric Black Holes with Surface Defects,” arXiv:2306.05463 [hep-th].
- H. Jockers and P. Mayr, “Quantum K-Theory of Calabi-Yau Manifolds,” JHEP 11 (2019) 011, arXiv:1905.03548 [hep-th].
- H. Jockers, P. Mayr, U. Ninad, and A. Tabler, “Wilson loop algebras and quantum K-theory for Grassmannians,” JHEP 10 (2020) 036, arXiv:1911.13286 [hep-th].
- H. Jockers, P. Mayr, U. Ninad, and A. Tabler, “BPS Indices, Modularity and Perturbations in Quantum K-theory,” arXiv:2106.07670 [hep-th].
- Y. Ruan and M. Zhang, “The level structure in quantum K-theory and mock theta functions,” arXiv:1804.06552 [math.AG].
- N. A. Nekrasov and S. L. Shatashvili, “Supersymmetric vacua and Bethe ansatz,” Nucl. Phys. B Proc. Suppl. 192-193 (2009) 91–112, arXiv:0901.4744 [hep-th].
- N. A. Nekrasov and S. L. Shatashvili, “Quantum integrability and supersymmetric vacua,” Prog. Theor. Phys. Suppl. 177 (2009) 105–119, arXiv:0901.4748 [hep-th].
- A. Kapustin and B. Willett, “Wilson loops in supersymmetric Chern-Simons-matter theories and duality,” arXiv:1302.2164 [hep-th].
- E. Witten, “The Verlinde algebra and the cohomology of the Grassmannian,” arXiv:hep-th/9312104.
- N. A. Nekrasov and S. L. Shatashvili, “Quantization of Integrable Systems and Four Dimensional Gauge Theories,” in 16th International Congress on Mathematical Physics, pp. 265–289. 8, 2009. arXiv:0908.4052 [hep-th].
- W. Gu, L. Mihalcea, E. Sharpe, and H. Zou, “Quantum K theory of symplectic Grassmannians,” J. Geom. Phys. 177 (2022) 104548, arXiv:2008.04909 [hep-th].
- W. Gu, L. C. Mihalcea, E. Sharpe, and H. Zou, “Quantum K theory of Grassmannians, Wilson line operators, and Schur bundles,” arXiv:2208.01091 [math.AG].
- A. Givental, “Permutation-equivariant quantum K-theory I-XI,” arXiv:1508.02690, 1508.04374, 1508.06697, 1509.00830, 1509.03903, 1509.07852, 1510.03076, 1510.06116, 1709.03180, 1710.02376, 1711.04201. https://math.berkeley.edu/~giventh/perm/perm.html.
- P. Koroteev, P. P. Pushkar, A. V. Smirnov, and A. M. Zeitlin, “Quantum K-theory of quiver varieties and many-body systems,” Selecta Math. 27 no. 5, (2021) 87, arXiv:1705.10419 [math.AG].
- P. P. Pushkar, A. Smirnov, and A. M. Zeitlin, “Baxter Q-operator from quantum K-theory,” Adv. Math. 360 (2020) 106919, arXiv:1612.08723 [math.AG].
- M. Aganagic and A. Okounkov, “Quasimap counts and Bethe eigenfunctions,” Moscow Math. J. 17 no. 4, (2017) 565–600, arXiv:1704.08746 [math-ph].
- D. Galakhov and M. Yamazaki, “Quiver Yangian and Supersymmetric Quantum Mechanics,” Commun. Math. Phys. 396 no. 2, (2022) 713–785, arXiv:2008.07006 [hep-th].
- D. Galakhov, W. Li, and M. Yamazaki, “Shifted quiver Yangians and representations from BPS crystals,” JHEP 08 (2021) 146, arXiv:2106.01230 [hep-th].
- D. Galakhov, W. Li, and M. Yamazaki, “Toroidal and elliptic quiver BPS algebras and beyond,” JHEP 02 (2022) 024, arXiv:2108.10286 [hep-th].
- D. Galakhov, W. Li, and M. Yamazaki, “Gauge/Bethe correspondence from quiver BPS algebras,” JHEP 11 (2022) 119, arXiv:2206.13340 [hep-th].
- W. Li, “Quiver algebras and their representations for arbitrary quivers,” arXiv:2303.05521 [hep-th].
- D. Galakhov, “BPS States Meet Generalized Cohomology,” arXiv:2303.05538 [hep-th].
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.