Papers
Topics
Authors
Recent
2000 character limit reached

Interfaces and Quantum Algebras, II: Cigar Partition Function (2306.16434v1)

Published 28 Jun 2023 in hep-th, math-ph, math.AG, math.MP, and math.QA

Abstract: The supersymmetric cigar (half-)index or cigar partition function of 3d $\mathcal{N}=2$ gauge theories contains a wealth of information. Physically, it captures the spectrum of BPS states, the non-perturbative corrections to various partition functions, the effective twisted superpotential and the data of supersymmetric vacua. Mathematically, it defines the K-theoretic Vertex counting vortices/quasimaps, and connects to quantum K-theory, as well as elliptic cohomology and stable envelopes. We explore these topics from the physics standpoint, systematically developing the foundations and explaining various mathematical properties using the quantum field theory machinery.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (120)
  1. M. Dedushenko and N. Nekrasov, “Interfaces and Quantum Algebras, I: Stable Envelopes,” arXiv:2109.10941 [hep-th].
  2. D. Maulik and A. Okounkov, “Quantum Groups and Quantum Cohomology,” arXiv:1211.1287 [math.AG].
  3. M. Aganagic and A. Okounkov, “Elliptic stable envelopes,” arXiv:1604.00423 [math.AG].
  4. M. Bullimore and D. Zhang, “3d 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 Gauge Theories on an Elliptic Curve,” SciPost Phys. 13 no. 1, (2022) 005, arXiv:2109.10907 [hep-th].
  5. L. Baulieu, A. Losev, and N. Nekrasov, “Chern-Simons and twisted supersymmetry in various dimensions,” Nucl. Phys. B 522 (1998) 82–104, arXiv:hep-th/9707174.
  6. H. Jockers and P. Mayr, “A 3d Gauge Theory/Quantum K-Theory Correspondence,” Adv. Theor. Math. Phys. 24 no. 2, (2020) 327–457, arXiv:1808.02040 [hep-th].
  7. D. Gaiotto, G. W. Moore, and E. Witten, “Algebra of the Infrared: String Field Theoretic Structures in Massive 𝒩=(2,2)𝒩22{\cal N}=(2,2)caligraphic_N = ( 2 , 2 ) Field Theory In Two Dimensions,” arXiv:1506.04087 [hep-th].
  8. E. Witten, “Elliptic Genera and Quantum Field Theory,” Commun. Math. Phys. 109 (1987) 525.
  9. C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli, and B. C. van Rees, “Infinite Chiral Symmetry in Four Dimensions,” Commun. Math. Phys. 336 no. 3, (2015) 1359–1433, arXiv:1312.5344 [hep-th].
  10. M. Dedushenko, S. Gukov, and P. Putrov, “Vertex algebras and 4-manifold invariants,” in Proceedings, Nigel Hitchin’s 70th Birthday Conference : Geometry and Physics : A Festschrift in honour of Nigel Hitchin : 2 volumes: Aarhus, Denmark, Oxford, UK, Madrid, Spain, September 5-16, 2016, vol. 1, pp. 249–318. 2018. arXiv:1705.01645 [hep-th].
  11. A. B. Givental, “Equivariant Gromov - Witten Invariants,” arXiv e-prints (Mar., 1996) alg–geom/9603021, arXiv:alg-geom/9603021 [math.AG].
  12. S. Cecotti and C. Vafa, “Topological antitopological fusion,” Nucl. Phys. B 367 (1991) 359–461.
  13. V. G. Knizhnik and A. B. Zamolodchikov, “Current Algebra and Wess-Zumino Model in Two-Dimensions,” Nucl. Phys. B 247 (1984) 83–103.
  14. D. Bernard, “On the Wess-Zumino-Witten Models on the Torus,” Nucl. Phys. B303 (1988) 77–93.
  15. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, “Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory,” Nucl. Phys. B 241 (1984) 333–380.
  16. A. Braverman, D. Maulik, and A. Okounkov, “Quantum cohomology of the Springer resolution,” arXiv:1001.0056 [math.AG].
  17. N. Nekrasov, “BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and qq-characters,” JHEP 03 (2016) 181, arXiv:1512.05388 [hep-th].
  18. N. Nekrasov, “BPS/CFT correspondence V: BPZ and KZ equations from qq-characters,” arXiv:1711.11582 [hep-th].
  19. N. Nekrasov and A. Tsymbaliuk, “Surface defects in gauge theory and KZ equation,” Lett. Math. Phys. 112 no. 2, (2022) 28, arXiv:2103.12611 [hep-th].
  20. A. Losev and Y. Manin, “New modular spaces of pointed curves and pencils of flat connections,” arXiv:math/0001003.
  21. B. Dubrovin, “Integrable systems in topological field theory,” Nucl. Phys. B 379 (1992) 627–689.
  22. C. Closset, T. T. Dumitrescu, G. Festuccia, and Z. Komargodski, “Supersymmetric Field Theories on Three-Manifolds,” JHEP 05 (2013) 017, arXiv:1212.3388 [hep-th].
  23. A. Gadde, S. Gukov, and P. Putrov, “Walls, Lines, and Spectral Dualities in 3d Gauge Theories,” JHEP 05 (2014) 047, arXiv:1302.0015 [hep-th].
  24. T. Dimofte, D. Gaiotto, and N. M. Paquette, “Dual boundary conditions in 3d SCFT’s,” JHEP 05 (2018) 060, arXiv:1712.07654 [hep-th].
  25. J. Gomis and S. Lee, “Exact Kahler Potential from Gauge Theory and Mirror Symmetry,” JHEP 04 (2013) 019, arXiv:1210.6022 [hep-th].
  26. C. Closset, H. Kim, and B. Willett, “Supersymmetric partition functions and the three-dimensional A-twist,” JHEP 03 (2017) 074, arXiv:1701.03171 [hep-th].
  27. F. Benini and A. Zaffaroni, “A topologically twisted index for three-dimensional supersymmetric theories,” JHEP 07 (2015) 127, arXiv:1504.03698 [hep-th].
  28. A. Okounkov, “Lectures on K-theoretic computations in enumerative geometry,” arXiv:1512.07363 [math.AG].
  29. S. Crew, D. Zhang, and A. Zhao, “To appear,”.
  30. S. B. Bradlow, “Special metrics and stability for holomorphic bundles with global sections,” Journal of Differential Geometry 33 no. 1, (1991) 169 – 213. https://doi.org/10.4310/jdg/1214446034.
  31. A. Losev, N. Nekrasov, and S. L. Shatashvili, “The Freckled instantons,” arXiv:hep-th/9908204.
  32. I. Ciocan-Fontanine, B. Kim, and D. Maulik, “Stable quasimaps to GIT quotients,” Journal of Geometry and Physics 75 (2014) 17–47, arXiv:1106.3724 [math.AG].
  33. S. Shadchin, “On F-term contribution to effective action,” JHEP 08 (2007) 052, arXiv:hep-th/0611278.
  34. T. Dimofte, S. Gukov, and L. Hollands, “Vortex Counting and Lagrangian 3-manifolds,” Lett. Math. Phys. 98 (2011) 225–287, arXiv:1006.0977 [hep-th].
  35. G. Bonelli, A. Tanzini, and J. Zhao, “Vertices, Vortices and Interacting Surface Operators,” JHEP 06 (2012) 178, arXiv:1102.0184 [hep-th].
  36. G. Bonelli, A. Sciarappa, A. Tanzini, and P. Vasko, “Vortex partition functions, wall crossing and equivariant Gromov-Witten invariants,” Commun. Math. Phys. 333 no. 2, (2015) 717–760, arXiv:1307.5997 [hep-th].
  37. C. Beem, T. Dimofte, and S. Pasquetti, “Holomorphic Blocks in Three Dimensions,” JHEP 12 (2014) 177, arXiv:1211.1986 [hep-th].
  38. S. Gukov, D. Pei, P. Putrov, and C. Vafa, “BPS spectra and 3-manifold invariants,” J. Knot Theor. Ramifications 29 no. 02, (2020) 2040003, arXiv:1701.06567 [hep-th].
  39. S. Cecotti, A. Neitzke, and C. Vafa, “R-Twisting and 4d/2d Correspondences,” arXiv:1006.3435 [hep-th].
  40. C. Closset, T. T. Dumitrescu, G. Festuccia, and Z. Komargodski, “The Geometry of Supersymmetric Partition Functions,” JHEP 01 (2014) 124, arXiv:1309.5876 [hep-th].
  41. M. Aganagic, E. Frenkel, and A. Okounkov, “Quantum q𝑞qitalic_q-Langlands Correspondence,” Trans. Moscow Math. Soc. 79 (2018) 1–83, arXiv:1701.03146 [hep-th].
  42. A. Tanaka, H. Mori, and T. Morita, “Superconformal index on R⁢P2×S1𝑅superscript𝑃2superscript𝑆1\mathbb{RP}^{2}\times\mathbb{S}^{1}italic_R italic_P start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT × italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT and mirror symmetry,” Phys. Rev. D 91 (2015) 105023, arXiv:1408.3371 [hep-th].
  43. Y. Imamura and S. Yokoyama, “Index for three dimensional superconformal field theories with general R-charge assignments,” JHEP 04 (2011) 007, arXiv:1101.0557 [hep-th].
  44. G. Festuccia and N. Seiberg, “Rigid Supersymmetric Theories in Curved Superspace,” JHEP 06 (2011) 114, arXiv:1105.0689 [hep-th].
  45. A. Kapustin and B. Willett, “Generalized Superconformal Index for Three Dimensional Field Theories,” arXiv:1106.2484 [hep-th].
  46. R. Brooks and S. J. Gates, Jr., “Extended supersymmetry and superBF gauge theories,” Nucl. Phys. B 432 (1994) 205–224, arXiv:hep-th/9407147.
  47. A. Kapustin and M. J. Strassler, “On mirror symmetry in three-dimensional Abelian gauge theories,” JHEP 04 (1999) 021, arXiv:hep-th/9902033.
  48. M. Bullimore, S. Crew, and D. Zhang, “Boundaries, Vermas, and Factorisation,” arXiv:2010.09741 [hep-th].
  49. S. Cecotti, D. Gaiotto, and C. Vafa, “t⁢t*𝑡superscript𝑡tt^{*}italic_t italic_t start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT geometry in 3 and 4 dimensions,” JHEP 05 (2014) 055, arXiv:1312.1008 [hep-th].
  50. N. A. Nekrasov and S. L. Shatashvili, “Bethe/Gauge correspondence on curved spaces,” JHEP 01 (2015) 100, arXiv:1405.6046 [hep-th].
  51. F. Benini and A. Zaffaroni, “Supersymmetric partition functions on Riemann surfaces,” Proc. Symp. Pure Math. 96 (2017) 13–46, arXiv:1605.06120 [hep-th].
  52. C. Closset and H. Kim, “Comments on twisted indices in 3d supersymmetric gauge theories,” JHEP 08 (2016) 059, arXiv:1605.06531 [hep-th].
  53. M. Bullimore and A. Ferrari, “Twisted Hilbert Spaces of 3d Supersymmetric Gauge Theories,” JHEP 08 (2018) 018, arXiv:1802.10120 [hep-th].
  54. M. Bullimore, A. Ferrari, and H. Kim, “Twisted indices of 3d 𝒩𝒩\mathcal{N}caligraphic_N = 4 gauge theories and enumerative geometry of quasi-maps,” JHEP 07 (2019) 014, arXiv:1812.05567 [hep-th].
  55. D. R. Morrison and M. R. Plesser, “Summing the instantons: Quantum cohomology and mirror symmetry in toric varieties,” Nucl. Phys. B 440 (1995) 279–354, arXiv:hep-th/9412236.
  56. K. Hori and C. Vafa, “Mirror symmetry,” arXiv:hep-th/0002222.
  57. F. Benini and S. Cremonesi, “Partition Functions of 𝒩=(2,2)𝒩22{\mathcal{N}=(2,2)}caligraphic_N = ( 2 , 2 ) Gauge Theories on S22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT and Vortices,” Commun. Math. Phys. 334 no. 3, (2015) 1483–1527, arXiv:1206.2356 [hep-th].
  58. N. Doroud, J. Gomis, B. Le Floch, and S. Lee, “Exact Results in D=2 Supersymmetric Gauge Theories,” JHEP 05 (2013) 093, arXiv:1206.2606 [hep-th].
  59. M. Fujitsuka, M. Honda, and Y. Yoshida, “Higgs branch localization of 3d 𝒩𝒩\mathscr{N}script_N = 2 theories,” PTEP 2014 no. 12, (2014) 123B02, arXiv:1312.3627 [hep-th].
  60. F. Benini and W. Peelaers, “Higgs branch localization in three dimensions,” JHEP 05 (2014) 030, arXiv:1312.6078 [hep-th].
  61. B. Kim, “Stable quasimaps to holomorphic symplectic quotients,” Adv. Stud. Pure Math. 71 (2016) 139–160, arXiv:1005.4125.
  62. E. Gonzalez and C. Woodward, “Gauged Gromov-Witten theory for small spheres,” arXiv:0907.3869 [math.SG].
  63. S. Hyun, J. Park, and J.-S. Park, “Spin-c Topological QCD,” Nucl. Phys. B 453 (1995) 199–224, arXiv:hep-th/9503201.
  64. A. Losev, N. Nekrasov, and S. L. Shatashvili, “Issues in topological gauge theory,” Nucl. Phys. B 534 (1998) 549–611, arXiv:hep-th/9711108.
  65. A. Okounkov and A. Smirnov, “Quantum difference equation for Nakajima varieties,” arXiv:1602.09007 [math-ph].
  66. A. Okounkov, “Nonabelian stable envelopes, vertex functions with descendents, and integral solutions of q𝑞qitalic_q-difference equations,” arXiv:2010.13217 [math.AG].
  67. E. Witten, “Two-dimensional gauge theories revisited,” J. Geom. Phys. 9 (1992) 303–368, arXiv:hep-th/9204083.
  68. G. W. Moore, N. Nekrasov, and S. Shatashvili, “Integrating over Higgs branches,” Commun. Math. Phys. 209 (2000) 97–121, arXiv:hep-th/9712241.
  69. A. Lossev, N. Nekrasov, and S. L. Shatashvili, “Testing Seiberg-Witten solution,” NATO Sci. Ser. C 520 (1999) 359–372, arXiv:hep-th/9801061.
  70. N. A. Nekrasov, “Seiberg-Witten prepotential from instanton counting,” Adv. Theor. Math. Phys. 7 no. 5, (2003) 831–864, arXiv:hep-th/0206161 [hep-th].
  71. N. Nekrasov and V. Pestun, “Seiberg-Witten geometry of four dimensional N=2 quiver gauge theories,” arXiv:1211.2240 [hep-th].
  72. A. Hanany and D. Tong, “Vortices, instantons and branes,” JHEP 07 (2003) 037, arXiv:hep-th/0306150.
  73. A. Hanany and D. Tong, “Vortex strings and four-dimensional gauge dynamics,” JHEP 04 (2004) 066, arXiv:hep-th/0403158.
  74. C. Closset and H. Kim, “Three-dimensional 𝒩𝒩\mathscr{N}script_N = 2 supersymmetric gauge theories and partition functions on Seifert manifolds: A review,” Int. J. Mod. Phys. A 34 no. 23, (2019) 1930011, arXiv:1908.08875 [hep-th].
  75. M. Bullimore, T. Dimofte, D. Gaiotto, J. Hilburn, and H.-C. Kim, “Vortices and Vermas,” Adv. Theor. Math. Phys. 22 (2018) 803–917, arXiv:1609.04406 [hep-th].
  76. M. Bullimore, A. E. V. Ferrari, and H. Kim, “The 3d twisted index and wall-crossing,” SciPost Phys. 12 no. 6, (2022) 186, arXiv:1912.09591 [hep-th].
  77. M. Bullimore, A. E. V. Ferrari, H. Kim, and G. Xu, “The twisted index and topological saddles,” JHEP 05 (2022) 116, arXiv:2007.11603 [hep-th].
  78. M. Bullimore, A. E. V. Ferrari, and H. Kim, “Supersymmetric Ground States of 3d 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 Gauge Theories on a Riemann Surface,” SciPost Phys. 12 no. 2, (2022) 072, arXiv:2105.08783 [hep-th].
  79. M. Bershadsky, A. Johansen, V. Sadov, and C. Vafa, “Topological reduction of 4-d SYM to 2-d sigma models,” Nucl. Phys. B 448 (1995) 166–186, arXiv:hep-th/9501096.
  80. T. Okazaki, “Abelian mirror symmetry of 𝒩𝒩\mathcal{N}caligraphic_N = (2, 2) boundary conditions,” JHEP 03 (2021) 163, arXiv:2010.13177 [hep-th].
  81. Y. Yoshida and K. Sugiyama, “Localization of three-dimensional 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 supersymmetric theories on S1×D2superscript𝑆1superscript𝐷2S^{1}\times D^{2}italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT × italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT,” PTEP 2020 no. 11, (2020) 113B02, arXiv:1409.6713 [hep-th].
  82. M. Bullimore, T. Dimofte, D. Gaiotto, and J. Hilburn, “Boundaries, Mirror Symmetry, and Symplectic Duality in 3d 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 Gauge Theory,” JHEP 10 (2016) 108, arXiv:1603.08382 [hep-th].
  83. T. Okazaki, “Abelian dualities of 𝒩=(0,4)𝒩04\mathcal{N}=(0,4)caligraphic_N = ( 0 , 4 ) boundary conditions,” JHEP 08 (2019) 170, arXiv:1905.07425 [hep-th].
  84. R. Rimányi, A. Smirnov, Z. Zhou, and A. Varchenko, “Three-Dimensional Mirror Symmetry and Elliptic Stable Envelopes,” Int. Math. Res. Not. 2022 no. 13, (2022) 10016–10094, arXiv:1902.03677 [math.AG].
  85. A. Smirnov and H. Dinkins, “Characters of tangent spaces at torus fixed points and 3d-mirror symmetry,” Lett. Math. Phys. 110 no. 9, (2020) 2337–2352, arXiv:1908.01199 [math.AG].
  86. A. Smirnov and Z. Zhou, “3d mirror symmetry and quantum K-theory of hypertoric varieties,” Adv. Math. 395 (2022) 108081, arXiv:2006.00118 [math.AG].
  87. H. Dinkins and A. Smirnov, “Euler characteristic of stable envelopes,” Selecta Math. 28 no. 4, (2022) 72, arXiv:2108.07202 [math.AG].
  88. Y. Kononov and A. Smirnov, “Pursuing quantum difference equations II: 3D-mirror symmetry,” arXiv:2008.06309 [math.AG].
  89. M. Dedushenko, “Remarks on Berry Connection in QFT, Anomalies, and Applications,” arXiv:2211.15680 [hep-th].
  90. K. Maruyoshi and J. Yagi, “Surface defects as transfer matrices,” PTEP 2016 no. 11, (2016) 113B01, arXiv:1606.01041 [hep-th].
  91. Y. Ito and Y. Yoshida, “Superconformal index with surface defects for class 𝒮ksubscript𝒮𝑘{\cal S}_{k}caligraphic_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT,” Nucl. Phys. B 962 (2021) 115277, arXiv:1606.01653 [hep-th].
  92. D. Gaiotto, S. Gukov, and N. Seiberg, “Surface Defects and Resolvents,” JHEP 09 (2013) 070, arXiv:1307.2578 [hep-th].
  93. S. Gukov and E. Witten, “Gauge Theory, Ramification, And The Geometric Langlands Program,” arXiv:hep-th/0612073.
  94. S. Gukov and E. Witten, “Rigid Surface Operators,” Adv. Theor. Math. Phys. 14 no. 1, (2010) 87–178, arXiv:0804.1561 [hep-th].
  95. D. Gaiotto, “Surface Operators in N = 2 4d Gauge Theories,” JHEP 11 (2012) 090, arXiv:0911.1316 [hep-th].
  96. D. Gaiotto, L. Rastelli, and S. S. Razamat, “Bootstrapping the superconformal index with surface defects,” JHEP 01 (2013) 022, arXiv:1207.3577 [hep-th].
  97. A. Gadde and S. Gukov, “2d Index and Surface operators,” JHEP 03 (2014) 080, arXiv:1305.0266 [hep-th].
  98. Y. Nakayama, “4D and 2D superconformal index with surface operator,” JHEP 08 (2011) 084, arXiv:1105.4883 [hep-th].
  99. Y. Chen, M. Heydeman, Y. Wang, and M. Zhang, “Probing Supersymmetric Black Holes with Surface Defects,” arXiv:2306.05463 [hep-th].
  100. H. Jockers and P. Mayr, “Quantum K-Theory of Calabi-Yau Manifolds,” JHEP 11 (2019) 011, arXiv:1905.03548 [hep-th].
  101. H. Jockers, P. Mayr, U. Ninad, and A. Tabler, “Wilson loop algebras and quantum K-theory for Grassmannians,” JHEP 10 (2020) 036, arXiv:1911.13286 [hep-th].
  102. H. Jockers, P. Mayr, U. Ninad, and A. Tabler, “BPS Indices, Modularity and Perturbations in Quantum K-theory,” arXiv:2106.07670 [hep-th].
  103. Y. Ruan and M. Zhang, “The level structure in quantum K-theory and mock theta functions,” arXiv:1804.06552 [math.AG].
  104. N. A. Nekrasov and S. L. Shatashvili, “Supersymmetric vacua and Bethe ansatz,” Nucl. Phys. B Proc. Suppl. 192-193 (2009) 91–112, arXiv:0901.4744 [hep-th].
  105. N. A. Nekrasov and S. L. Shatashvili, “Quantum integrability and supersymmetric vacua,” Prog. Theor. Phys. Suppl. 177 (2009) 105–119, arXiv:0901.4748 [hep-th].
  106. A. Kapustin and B. Willett, “Wilson loops in supersymmetric Chern-Simons-matter theories and duality,” arXiv:1302.2164 [hep-th].
  107. E. Witten, “The Verlinde algebra and the cohomology of the Grassmannian,” arXiv:hep-th/9312104.
  108. N. A. Nekrasov and S. L. Shatashvili, “Quantization of Integrable Systems and Four Dimensional Gauge Theories,” in 16th International Congress on Mathematical Physics, pp. 265–289. 8, 2009. arXiv:0908.4052 [hep-th].
  109. W. Gu, L. Mihalcea, E. Sharpe, and H. Zou, “Quantum K theory of symplectic Grassmannians,” J. Geom. Phys. 177 (2022) 104548, arXiv:2008.04909 [hep-th].
  110. W. Gu, L. C. Mihalcea, E. Sharpe, and H. Zou, “Quantum K theory of Grassmannians, Wilson line operators, and Schur bundles,” arXiv:2208.01091 [math.AG].
  111. A. Givental, “Permutation-equivariant quantum K-theory I-XI,” arXiv:1508.02690, 1508.04374, 1508.06697, 1509.00830, 1509.03903, 1509.07852, 1510.03076, 1510.06116, 1709.03180, 1710.02376, 1711.04201. https://math.berkeley.edu/~giventh/perm/perm.html.
  112. P. Koroteev, P. P. Pushkar, A. V. Smirnov, and A. M. Zeitlin, “Quantum K-theory of quiver varieties and many-body systems,” Selecta Math. 27 no. 5, (2021) 87, arXiv:1705.10419 [math.AG].
  113. P. P. Pushkar, A. Smirnov, and A. M. Zeitlin, “Baxter Q-operator from quantum K-theory,” Adv. Math. 360 (2020) 106919, arXiv:1612.08723 [math.AG].
  114. M. Aganagic and A. Okounkov, “Quasimap counts and Bethe eigenfunctions,” Moscow Math. J. 17 no. 4, (2017) 565–600, arXiv:1704.08746 [math-ph].
  115. D. Galakhov and M. Yamazaki, “Quiver Yangian and Supersymmetric Quantum Mechanics,” Commun. Math. Phys. 396 no. 2, (2022) 713–785, arXiv:2008.07006 [hep-th].
  116. D. Galakhov, W. Li, and M. Yamazaki, “Shifted quiver Yangians and representations from BPS crystals,” JHEP 08 (2021) 146, arXiv:2106.01230 [hep-th].
  117. D. Galakhov, W. Li, and M. Yamazaki, “Toroidal and elliptic quiver BPS algebras and beyond,” JHEP 02 (2022) 024, arXiv:2108.10286 [hep-th].
  118. D. Galakhov, W. Li, and M. Yamazaki, “Gauge/Bethe correspondence from quiver BPS algebras,” JHEP 11 (2022) 119, arXiv:2206.13340 [hep-th].
  119. W. Li, “Quiver algebras and their representations for arbitrary quivers,” arXiv:2303.05521 [hep-th].
  120. D. Galakhov, “BPS States Meet Generalized Cohomology,” arXiv:2303.05538 [hep-th].
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.