Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Unveiling Neutrino Halos with CMB Lensing (2306.15715v2)

Published 27 Jun 2023 in astro-ph.CO and hep-ph

Abstract: The existence of a cosmic neutrino background has been inferred indirectly from cosmological surveys through its effect on the linear-theory evolution of primordial density perturbations, as well as from measurements of the primordial abundances of light elements. Constraints on the masses of the three neutrino species imply that at least two of them move non-relativistically today. As a consequence, non-linear evolution of density perturbations results in the formation of neutrino halos around dark-matter halos. We study whether these neutrino halos can be detected in the foreseeable future through measurements of weak gravitational lensing of the cosmic microwave background, thus providing, possibly, the first beyond-linear-theory signature of cosmic neutrinos.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. Steven Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (John Wiley and Sons, New York, 1972).
  2. Scott Dodelson and Michael S. Turner, “Nonequilibrium neutrino statistical mechanics in the expanding universe,” Phys. Rev. D 46, 3372–3387 (1992).
  3. Steven Weinberg, “Universal Neutrino Degeneracy,” Phys. Rev. 128, 1457–1473 (1962).
  4. Alfredo G. Cocco, Gianpiero Mangano,  and Marcello Messina, “Probing low energy neutrino backgrounds with neutrino capture on beta decaying nuclei,” JCAP 06, 015 (2007), arXiv:hep-ph/0703075 .
  5. M. G. Betti et al. (PTOLEMY), “Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case,” JCAP 07, 047 (2019), arXiv:1902.05508 [astro-ph.CO] .
  6. James Alvey, Miguel Escudero, Nashwan Sabti,  and Thomas Schwetz, “Cosmic neutrino background detection in large-neutrino-mass cosmologies,” Phys. Rev. D 105, 063501 (2022a), arXiv:2111.14870 [hep-ph] .
  7. A. Apponi et al. (PTOLEMY), “Heisenberg’s uncertainty principle in the PTOLEMY project: A theory update,” Phys. Rev. D 106, 053002 (2022), arXiv:2203.11228 [hep-ph] .
  8. Leo Stodolsky, “Speculations on Detection of the Neutrino Sea,” Phys. Rev. Lett. 34, 110 (1975), [Erratum: Phys.Rev.Lett. 34, 508 (1975)].
  9. Paul Langacker, Jacques P. Leveille,  and Jon Sheiman, “On the Detection of Cosmological Neutrinos by Coherent Scattering,” Phys. Rev. D 27, 1228 (1983).
  10. Gintaras Duda, Graciela Gelmini,  and Shmuel Nussinov, “Expected signals in relic neutrino detectors,” Phys. Rev. D 64, 122001 (2001), arXiv:hep-ph/0107027 .
  11. Birgit Eberle, Andreas Ringwald, Liguo Song,  and Thomas J. Weiler, “Relic neutrino absorption spectroscopy,” Phys. Rev. D 70, 023007 (2004), arXiv:hep-ph/0401203 .
  12. Martin Bauer and Jack D. Shergold, “Relic neutrinos at accelerator experiments,” Phys. Rev. D 104, 083039 (2021), arXiv:2104.12784 [hep-ph] .
  13. M. Yoshimura, N. Sasao,  and M. Tanaka, “Experimental method of detecting relic neutrino by atomic de-excitation,” Phys. Rev. D 91, 063516 (2015), arXiv:1409.3648 [hep-ph] .
  14. Valerie Domcke and Martin Spinrath, “Detection prospects for the Cosmic Neutrino Background using laser interferometers,” JCAP 06, 055 (2017), arXiv:1703.08629 [astro-ph.CO] .
  15. Rodrigo Alonso, Diego Blas,  and Peter Wolf, “Exploring the ultra-light to sub-MeV dark matter window with atomic clocks and co-magnetometers,” JHEP 07, 069 (2019), arXiv:1810.00889 [hep-ph] .
  16. Martin Bauer and Jack D. Shergold, “Limits on the cosmic neutrino background,” JCAP 01, 003 (2023), arXiv:2207.12413 [hep-ph] .
  17. Asimina Arvanitaki and Savas Dimopoulos, “The Cosmic Neutrino Background on the Surface of the Earth,”  (2022), arXiv:2212.00036 [hep-ph] .
  18. M. Aker et al. (KATRIN), ‘‘Direct neutrino-mass measurement with sub-electronvolt sensitivity,” Nature Phys. 18, 160–166 (2022), arXiv:2105.08533 [hep-ex] .
  19. Julien Lesgourgues and Sergio Pastor, “Massive neutrinos and cosmology,” Phys. Rept. 429, 307–379 (2006), arXiv:astro-ph/0603494 .
  20. Brian D. Fields, Keith A. Olive, Tsung-Han Yeh,  and Charles Young, “Big-Bang Nucleosynthesis after Planck,” JCAP 03, 010 (2020), [Erratum: JCAP 11, E02 (2020)], arXiv:1912.01132 [astro-ph.CO] .
  21. N. Aghanim et al. (Planck), “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  22. James Alvey, Miguel Escudero,  and Nashwan Sabti, “What can CMB observations tell us about the neutrino distribution function?” JCAP 02, 037 (2022b), arXiv:2111.12726 [astro-ph.CO] .
  23. Ivan Esteban, M. C. Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz,  and Albert Zhou, “The fate of hints: updated global analysis of three-flavor neutrino oscillations,” JHEP 09, 178 (2020), arXiv:2007.14792 [hep-ph] .
  24. Andreas Ringwald and Yvonne Y. Y. Wong, “Gravitational clustering of relic neutrinos and implications for their detection,” JCAP 12, 005 (2004), arXiv:hep-ph/0408241 .
  25. Francisco Villaescusa-Navarro, Jordi Miralda-Escudé, Carlos Peña Garay,  and Vicent Quilis, “Neutrino Halos in Clusters of Galaxies and their Weak Lensing Signature,” JCAP 06, 027 (2011), arXiv:1104.4770 [astro-ph.CO] .
  26. Kiyotomo Ichiki and Masahiro Takada, “The impact of massive neutrinos on the abundance of massive clusters,” Phys. Rev. D 85, 063521 (2012), arXiv:1108.4688 [astro-ph.CO] .
  27. Jue Zhang and Xin Zhang, “Gravitational clustering of cosmic relic neutrinos in the Milky Way,” Nature Commun. 9, 1833 (2018), arXiv:1712.01153 [astro-ph.CO] .
  28. P. F. de Salas, S. Gariazzo, J. Lesgourgues,  and S. Pastor, “Calculation of the local density of relic neutrinos,” JCAP 09, 034 (2017), arXiv:1706.09850 [astro-ph.CO] .
  29. Emil Brinch Holm, Isabel M. Oldengott,  and Stefan Zentarra, “Local clustering of relic neutrinos with kinetic field theory,”   (2023), arXiv:2305.13379 [hep-ph] .
  30. Uros Seljak and Matias Zaldarriaga, “Lensing induced cluster signatures in cosmic microwave background,” Astrophys. J. 538, 57–64 (2000), arXiv:astro-ph/9907254 .
  31. Antony Lewis and Lindsay King, “Cluster masses from cmb and galaxy weak lensing,” Phys. Rev. D 73, 063006 (2006), arXiv:astro-ph/0512104 .
  32. Kevin Levy, Srinivasan Raghunathan,  and Kaustuv Basu, “A Foreground-Immune CMB-Cluster Lensing Estimator,”  (2023), arXiv:2305.06326 [astro-ph.CO] .
  33. Benjamin Horowitz, Simone Ferraro,  and Blake D. Sherwin, “Reconstructing Small Scale Lenses from the Cosmic Microwave Background Temperature Fluctuations,” Mon. Not. Roy. Astron. Soc. 485, 3919–3929 (2019), arXiv:1710.10236 [astro-ph.CO] .
  34. M. Birkinshaw and S. F. Gull, “A test for transverse motions of galaxies and clusters,” Nature 302, 315–317 (1983).
  35. Selim C. Hotinli, Joel Meyers, Neal Dalal, Andrew H. Jaffe, Matthew C. Johnson, James B. Mertens, Moritz Münchmeyer, Kendrick M. Smith,  and Alexander van Engelen, “Transverse Velocities with the Moving Lens Effect,” Phys. Rev. Lett.  123, 061301 (2019), arXiv:1812.03167 [astro-ph.CO] .
  36. Selim C. Hotinli, Matthew C. Johnson,  and Joel Meyers, “Optimal filters for the moving lens effect,” Phys. Rev. D 103, 043536 (2021), arXiv:2006.03060 [astro-ph.CO] .
  37. Camila A. Correa, J. Stuart B. Wyithe, Joop Schaye,  and Alan R. Duffy, “The accretion history of dark matter haloes – III. A physical model for the concentration–mass relation,” Mon. Not. Roy. Astron. Soc. 452, 1217–1232 (2015), arXiv:1502.00391 [astro-ph.CO] .
  38. Shwetabh Singh and Chung-Pei Ma, “Neutrino clustering in cold dark matter halos : Implications for ultrahigh-energy cosmic rays,” Phys. Rev. D 67, 023506 (2003), arXiv:astro-ph/0208419 .
  39. Diego Blas, Julien Lesgourgues,  and Thomas Tram, “The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes,” JCAP 07, 034 (2011), arXiv:1104.2933 [astro-ph.CO] .
  40. Julien Lesgourgues and Sergio Pastor, “Neutrino mass from Cosmology,” Adv. High Energy Phys. 2012, 608515 (2012), arXiv:1212.6154 [hep-ph] .
  41. Antony Lewis and Anthony Challinor, “Weak gravitational lensing of the CMB,” Physics Reports 429, 1–65 (2006), arXiv:astro-ph/0601594 [astro-ph] .
  42. Simone Ferraro, Emmanuel Schaan,  and Elena Pierpaoli, “Is the Rees-Sciama effect detectable by the next generation of cosmological experiments?”   (2022), arXiv:2205.10332 [astro-ph.CO] .
  43. Paul A. Abell et al. (LSST Science, LSST Project), “LSST Science Book, Version 2.0,”   (2009), arXiv:0912.0201 [astro-ph.IM] .
  44. Ravi K. Sheth and Giuseppe Tormen, “Large scale bias and the peak background split,” Mon. Not. Roy. Astron. Soc. 308, 119 (1999), arXiv:astro-ph/9901122 .
  45. A. Palmese et al. (DES), “Stellar Mass as a Galaxy Cluster Mass Proxy: Application to the Dark Energy Survey redMaPPer Clusters,” Mon. Not. Roy. Astron. Soc. 493, 4591–4606 (2020), arXiv:1903.08813 [astro-ph.CO] .
  46. Ryoma Murata, Takahiro Nishimichi, Masahiro Takada, Hironao Miyatake, Masato Shirasaki, Surhud More, Ryuichi Takahashi,  and Ken Osato, “Constraints on the mass-richness relation from the abundance and weak lensing of SDSS clusters,” Astrophys. J. 854, 120 (2018), arXiv:1707.01907 [astro-ph.CO] .
  47. Mario Ballardini, William Luke Matthewson,  and Roy Maartens, “Constraining primordial non-Gaussianity using two galaxy surveys and CMB lensing,” Mon. Not. Roy. Astron. Soc. 489, 1950–1956 (2019), arXiv:1906.04730 [astro-ph.CO] .
  48. David J. Schlegel et al., “Astro2020 APC White Paper: The MegaMapper: a z >>> 2 Spectroscopic Instrument for the Study of Inflation and Dark Energy,”   (2019), arXiv:1907.11171 [astro-ph.IM] .
  49. Antony Lewis, Anthony Challinor,  and Anthony Lasenby, “Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmann-Robertson-Walker Models,” Astrophys. J. 538, 473–476 (2000), arXiv:astro-ph/9911177 [astro-ph] .
  50. Selim C. Hotinli, Kendrick M. Smith, Mathew S. Madhavacheril,  and Marc Kamionkowski, “Cosmology with the moving lens effect,” Phys. Rev. D 104, 083529 (2021), arXiv:2108.02207 [astro-ph.CO] .
  51. Maximilian H. Abitbol et al. (Simons Observatory), “The Simons Observatory: Astro2020 Decadal Project Whitepaper,” Bull. Am. Astron. Soc. 51, 147 (2019), arXiv:1907.08284 [astro-ph.IM] .
  52. Kevork N. Abazajian et al. (CMB-S4), “CMB-S4 Science Book, First Edition,”   (2016), arXiv:1610.02743 [astro-ph.CO] .
  53. Kevork Abazajian et al., “CMB-S4 Science Case, Reference Design, and Project Plan,”   (2019), arXiv:1907.04473 [astro-ph.IM] .
  54. Neelima Sehgal et al., ‘‘CMB-HD: An Ultra-Deep, High-Resolution Millimeter-Wave Survey Over Half the Sky,”   (2019), arXiv:1906.10134 [astro-ph.CO] .
  55. Simone Aiola et al. (CMB-HD), “Snowmass2021 CMB-HD White Paper,”   (2022), arXiv:2203.05728 [astro-ph.CO] .
  56. Toshiya Namikawa, Duncan Hanson,  and Ryuichi Takahashi, “Bias-Hardened CMB Lensing,” Mon. Not. Roy. Astron. Soc. 431, 609–620 (2013), arXiv:1209.0091 [astro-ph.CO] .
  57. Marius Millea, Ethan Anderes,  and Benjamin D. Wandelt, “Bayesian delensing of CMB temperature and polarization,” Phys. Rev. D 100, 023509 (2019), arXiv:1708.06753 [astro-ph.CO] .
  58. Boryana Hadzhiyska, Blake D. Sherwin, Mathew Madhavacheril,  and Simone Ferraro, “Improving Small-Scale CMB Lensing Reconstruction,” Phys. Rev. D 100, 023547 (2019), arXiv:1905.04217 [astro-ph.CO] .
  59. Omar Darwish, Blake D. Sherwin, Noah Sailer, Emmanuel Schaan,  and Simone Ferraro, “Optimizing foreground mitigation for CMB lensing with combined multifrequency and geometric methods,” Phys. Rev. D 107, 043519 (2023), arXiv:2111.00462 [astro-ph.CO] .
  60. Noah Sailer, Emmanuel Schaan,  and Simone Ferraro, “Lower bias, lower noise CMB lensing with foreground-hardened estimators,” Phys. Rev. D 102, 063517 (2020), arXiv:2007.04325 [astro-ph.CO] .
  61. Noah Sailer, Simone Ferraro,  and Emmanuel Schaan, “Foreground-immune CMB lensing reconstruction with polarization,” Phys. Rev. D 107, 023504 (2023), arXiv:2211.03786 [astro-ph.CO] .
  62. Liam Parker, Dongwon Han, Pablo Lemos Portela,  and Shirley Ho, “Recovering Galaxy Cluster Convergence from Lensed CMB with Generative Adversarial Networks,” arXiv e-prints , arXiv:2211.08990 (2022), arXiv:2211.08990 [astro-ph.CO] .
  63. Simon Foreman, Selim C. Hotinli, Mathew S. Madhavacheril, Alexander van Engelen,  and Christina D. Kreisch, “Subtracting the kinetic Sunyaev-Zeldovich effect from the cosmic microwave background with surveys of large-scale structure,” Phys. Rev. D 107, 083502 (2023), arXiv:2209.03973 [astro-ph.CO] .
  64. Peikai Li, Ipek Ilayda Onur, Scott Dodelson,  and Shreyas Chaudhari, “High-Resolution CMB Lensing Reconstruction with Deep Learning,” arXiv e-prints , arXiv:2205.07368 (2022), arXiv:2205.07368 [astro-ph.CO] .
  65. Dongwon Han and Neelima Sehgal, “Mitigating foreground bias to the CMB lensing power spectrum for a CMB-HD survey,” Phys. Rev. D 105, 083516 (2022), arXiv:2112.02109 [astro-ph.CO] .
  66. Selim C. Hotinli, Joel Meyers, Cynthia Trendafilova, Daniel Green,  and Alexander van Engelen, “The benefits of CMB delensing,” JCAP 04, 020 (2022), arXiv:2111.15036 [astro-ph.CO] .
  67. Max Tegmark, Angelica de Oliveira-Costa,  and Andrew Hamilton, “A high resolution foreground cleaned CMB map from WMAP,” Phys. Rev. D 68, 123523 (2003), arXiv:astro-ph/0302496 .
  68. L. Verde, T. Treu,  and A. G. Riess, “Tensions between the Early and the Late Universe,” Nature Astron. 3, 891 (2019), arXiv:1907.10625 [astro-ph.CO] .
  69. Eleonora Di Valentino et al., ‘‘Cosmology intertwined III: f⁢σ8𝑓subscript𝜎8f\sigma_{8}italic_f italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and S8subscript𝑆8S_{8}italic_S start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT,” Astropart. Phys. 131, 102604 (2021), arXiv:2008.11285 [astro-ph.CO] .
  70. Leandros Perivolaropoulos and Foteini Skara, “Challenges for ΛΛ\Lambdaroman_ΛCDM: An update,” New Astron. Rev. 95, 101659 (2022), arXiv:2105.05208 [astro-ph.CO] .
  71. S. Peirani, Y. Dubois, M. Volonteri, J. Devriendt, K. Bundy, J. Silk, C. Pichon, S. Kaviraj, R. Gavazzi,  and M. Habouzit, “Density profile of dark matter haloes and galaxies in the horizon–agn simulation: the impact of AGN feedback,” Mon. Not. Roy. Astron. Soc. 472, 2153–2169 (2017), arXiv:1611.09922 [astro-ph.GA] .
  72. Daniele Sorini, Romeel Dave, Weiguang Cui,  and Sarah Appleby, “How baryons affect haloes and large-scale structure: a unified picture from the Simba simulation,” Mon. Not. Roy. Astron. Soc. 516, 883–906 (2022), arXiv:2111.13708 [astro-ph.GA] .
  73. Eegene Chung, Simon Foreman,  and Alexander van Engelen, “Baryonic effects on CMB lensing and neutrino mass constraints,” Phys. Rev. D 101, 063534 (2020), [Erratum: Phys.Rev.D 102, 109903 (2020)], arXiv:1910.09565 [astro-ph.CO] .
  74. Daniel Green, Joel Meyers,  and Alexander van Engelen, “CMB Delensing Beyond the B Modes,” JCAP 12, 005 (2017), arXiv:1609.08143 [astro-ph.CO] .
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: