Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine bounds for best constants of fractional subcritical Sobolev embeddings and applications to nonlocal PDEs (2305.09486v1)

Published 16 May 2023 in math.AP and math.FA

Abstract: We establish fine bounds for best constants of the fractional subcritical Sobolev embeddings \begin{align*} W_{0}{s,p}\left(\Omega\right)\hookrightarrow L{q}\left(\Omega\right), \end{align*} where $N\geq1$, $0<s\<1$, $p=1,2$, $1\leq q<p_{s}^{\ast}=\frac{Np}{N-sp}$ and $\Omega\subset\mathbb{R}^{N}$ is a bounded smooth domain or the whole space $\mathbb{R}^{N}$. Our results cover the borderline case $p=1$, the Hilbert case $p=2$, $N\>2s$ and the so-called Sobolev limiting case $N=1$, $s=\frac{1}{2}$ and $p=2$, where a sharp asymptotic estimate is given by means of a limiting procedure. We apply the obtained results to prove existence and non-existence of solutions for a wide class of nonlocal partial differential equations.

Summary

We haven't generated a summary for this paper yet.