Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attainability of the fractional Hardy constant with nonlocal mixed boundary conditions. Applications (1709.08399v1)

Published 25 Sep 2017 in math.AP

Abstract: The first goal of this paper is to study necessary and sufficient conditions to obtain the attainability of the \textit{fractional Hardy inequality } $$\Lambda_{N}\equiv\Lambda_{N}(\Omega):=\inf_{{\phi\in \mathbb{E}s(\Omega, D), \phi\neq 0}} \dfrac{\frac{a_{d,s}}{2} \displaystyle\int_{\mathbb{R}d} \int_{\mathbb{R}d} \dfrac{|\phi(x)-\phi(y)|2}{|x-y|{d+2s}}dx dy} {\displaystyle\int_\Omega \frac{\phi2}{|x|{2s}}\,dx}, $$ where $\Omega$ is a bounded domain of $\mathbb{R}d$, $0<s\<1$, $D\subset \mathbb{R}^d\setminus \Omega$ a nonempty open set and $$\mathbb{E}^{s}(\Omega,D)=\left\{ u \in H^s(\mathbb{R}^d):\, u=0 \text{ in } D\right\}.$$ The second aim of the paper is to study the \textit{mixed Dirichlet-Neumann boundary problem} associated to the minimization problem and related properties; precisely, to study semilinear elliptic problem for the \textit{fractional laplacian}, that is, $$P_{\lambda} \, \equiv \left\{ \begin{array}{rcll} (-\Delta)^s u &= & \lambda \dfrac{u}{|x|^{2s}} +u^p & {\text{ in }}\Omega, u & > & 0 &{\text{ in }} \Omega, \mathcal{B}{s}u&:=&u\chi{D}+\mathcal{N}{s}u\chi{N}=0 &{\text{ in }}\mathbb{R}{d}\backslash \Omega, \ \end{array}\right. $$ with $N$ and $D$ open sets in $\mathbb{R}d\backslash\Omega$ such that $N \cap D=\emptyset$ and $\overline{N}\cup \overline{D}= \mathbb{R}d \backslash\Omega$, $d>2s$, $\lambda> 0$ and $0<p\le 2_s*-1$, $2_s*=\frac{2d}{d-2s}$. We emphasize that the nonlinear term can be critical. The operators $(-\Delta)s $, fractional laplacian, and $\mathcal{N}_{s}$, nonlocal Neumann condition, are defined below in (1.5) and (1.6) respectively.

Summary

We haven't generated a summary for this paper yet.