Caffarelli-Kohn-Nirenberg type inequalities of fractional order with applications (1611.04724v2)
Abstract: Let $0<s\<1$ and $p\>1$ be such that $ps<N$. Assume that $\Omega$ is a bounded domain containing the origin. Staring from the ground state inequality by R. Frank and R. Seiringer we obtain: 1- The following improved Hardy inequality for $p\ge 2$ For all $q<p$, there exists a positive constant $C\equiv C(\Omega, q, N, s)$ such that $$ \int_{{\mathbb R}^N}\int_{{\mathbb R}^N} \, \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+ps}}\,dx\,dy - \Lambda_{N,p,s} \int_{{\mathbb R}^N} \frac{|u(x)|^p}{|x|^{p}}\,dx\geq C \int_{\Omega}\dint_{\Omega}\frac{|u(x)-u(y)|^p}{|x-y|^{N+qs}}dxdy $$ for all $u \in \mathcal{C}_0^\infty({\mathbb R}^N)$. Here $\Lambda_{N,p,s}$ is the optimal constant in the Hardy inequality. 2- Define $p^*_{s}=\frac{pN}{N-ps}$ and let $\beta<\frac{N-ps}{2}$, then \begin{equation*} \int_{{\mathbb R}^N}\int_{{\mathbb R}^N} \frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}|x|^{\beta}|y|^{\beta}} \,dy\,dx\ge S(N,p,s,\beta)\Big(\int_{{\mathbb R}^N} \frac{|u(x)|^{p^*_{s}}}{|x|^{2\beta\frac{p^*_s}{p}}}\,dx\Big)^{\frac{p}{p^*_{s}}}, \end{equation*} for all $u\in \mathcal{C}^\infty_0(\Omega)$ where $S\equiv S(N,p,s,\beta)\>0$. 3- If $\beta\equiv \frac{N-ps}{2}$, as a consequence of the improved Hardy inequality, we obtain that for all $q<p$, there exists a positive constant $C(\Omega)$ such that \begin{equation*} \int_{{\mathbb R}N}\int_{{\mathbb R}N} \dfrac{|u(x)-u(y)|p}{|x-y|{N+ps}|x|{\beta}|y|{\beta}} \,dy\,dx\ge C(\Omega)\Big(\int_{\Omega} \frac{|u(x)|{p*_{s,q}}}{|x|{2\beta \frac{p_{s,q}}{p}}}\,dx\Big){\frac{p}{p^_{s,q}}}, \end{equation*} for all $u\in \mathcal{C}\infty_0(\Omega)$ where $p*_{s,q}=\frac{pN}{N-qs}$. \ Notice that the previous inequalities can be understood as the fractional extension of the Callarelli-Kohn-Nirenberg inequalities.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.