Papers
Topics
Authors
Recent
2000 character limit reached

Gradient Adjusting Networks for Domain Inversion (2302.11413v1)

Published 22 Feb 2023 in cs.CV and eess.IV

Abstract: StyleGAN2 was demonstrated to be a powerful image generation engine that supports semantic editing. However, in order to manipulate a real-world image, one first needs to be able to retrieve its corresponding latent representation in StyleGAN's latent space that is decoded to an image as close as possible to the desired image. For many real-world images, a latent representation does not exist, which necessitates the tuning of the generator network. We present a per-image optimization method that tunes a StyleGAN2 generator such that it achieves a local edit to the generator's weights, resulting in almost perfect inversion, while still allowing image editing, by keeping the rest of the mapping between an input latent representation tensor and an output image relatively intact. The method is based on a one-shot training of a set of shallow update networks (aka. Gradient Modification Modules) that modify the layers of the generator. After training the Gradient Modification Modules, a modified generator is obtained by a single application of these networks to the original parameters, and the previous editing capabilities of the generator are maintained. Our experiments show a sizable gap in performance over the current state of the art in this very active domain. Our code is available at \url{https://github.com/sheffier/gani}.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.