Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Asymptotic Equipartition Theorems in von Neumann algebras (2212.14700v3)

Published 30 Dec 2022 in quant-ph, math-ph, math.FA, math.MP, math.OA, and math.PR

Abstract: The Asymptotic Equipartition Property (AEP) in information theory establishes that independent and identically distributed (i.i.d.) states behave in a way that is similar to uniform states. In particular, with appropriate smoothing, for such states both the min and the max relative entropy asymptotically coincide with the relative entropy. In this paper, we generalize several such equipartition properties to states on general von Neumann algebras. First, we show that the smooth max relative entropy of i.i.d. states on a von Neumann algebra has an asymptotic rate given by the quantum relative entropy. In fact, our AEP not only applies to states, but also to quantum channels with appropriate restrictions. In addition, going beyond the i.i.d. assumption, we show that for states that are produced by a sequential process of quantum channels, the smooth max relative entropy can be upper bounded by the sum of appropriate channel relative entropies. Our main technical contributions are to extend to the context of general von Neumann algebras a chain rule for quantum channels, as well as an additivity result for the channel relative entropy with a replacer channel.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: