Quantum exponentials for the modular double and applications in gravity models (2212.07696v3)
Abstract: In this note, we propose a decomposition of the quantum matrix group SL$_q+(2,\mathbb{R})$ as (deformed) exponentiation of the quantum algebra generators of Faddeev's modular double of $\text{U}_q(\mathfrak{sl}(2, \mathbb{R}))$. The formula is checked by relating hyperbolic representation matrices with the Whittaker function. We interpret (or derive) it in terms of Hopf duality, and use it to explicitly construct the regular representation of the modular double, leading to the Casimir and its modular dual as the analogue of the Laplacian on the quantum group manifold. This description is important for both 2d Liouville gravity, and 3d pure gravity, since both are governed by this algebraic structure. This result builds towards a $q$-BF formulation of the amplitudes of both of these gravitational models.
- R. Jackiw, “Lower Dimensional Gravity,” Nucl. Phys. B252 (1985) 343–356.
- C. Teitelboim, “Gravitation and Hamiltonian Structure in Two Space-Time Dimensions,” Phys. Lett. 126B (1983) 41–45.
- A. Almheiri and J. Polchinski, “Models of AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT backreaction and holography,” JHEP 11 (2015) 014, arXiv:1402.6334 [hep-th].
- K. Jensen, “Chaos in AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT Holography,” Phys. Rev. Lett. 117 no. 11, (2016) 111601, arXiv:1605.06098 [hep-th].
- J. Maldacena, D. Stanford, and Z. Yang, “Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space,” PTEP 2016 no. 12, (2016) 12C104, arXiv:1606.01857 [hep-th].
- J. Engelsöy, T. G. Mertens, and H. Verlinde, “An investigation of AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT backreaction and holography,” JHEP 07 (2016) 139, arXiv:1606.03438 [hep-th].
- J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka, “Black Holes and Random Matrices,” JHEP 05 (2017) 118, arXiv:1611.04650 [hep-th]. [Erratum: JHEP09,002(2018)].
- D. Stanford and E. Witten, “Fermionic Localization of the Schwarzian Theory,” JHEP 10 (2017) 008, arXiv:1703.04612 [hep-th].
- A. Kitaev and S. J. Suh, “Statistical mechanics of a two-dimensional black hole,” JHEP 05 (2019) 198, arXiv:1808.07032 [hep-th].
- T. G. Mertens, G. J. Turiaci, and H. L. Verlinde, “Solving the Schwarzian via the Conformal Bootstrap,” JHEP 08 (2017) 136, arXiv:1705.08408 [hep-th].
- T. G. Mertens, “The Schwarzian theory – origins,” JHEP 05 (2018) 036, arXiv:1801.09605 [hep-th].
- H. T. Lam, T. G. Mertens, G. J. Turiaci, and H. Verlinde, “Shockwave S-matrix from Schwarzian Quantum Mechanics,” JHEP 11 (2018) 182, arXiv:1804.09834 [hep-th].
- Z. Yang, “The Quantum Gravity Dynamics of Near Extremal Black Holes,” JHEP 05 (2019) 205, arXiv:1809.08647 [hep-th].
- P. Saad, S. H. Shenker, and D. Stanford, “JT gravity as a matrix integral,” arXiv:1903.11115 [hep-th].
- T. G. Mertens and G. J. Turiaci, “Solvable Models of Quantum Black Holes: A Review on Jackiw-Teitelboim Gravity,” arXiv:2210.10846 [hep-th].
- T. Fukuyama and K. Kamimura, “Gauge Theory of Two-dimensional Gravity,” Phys. Lett. 160B (1985) 259–262.
- K. Isler and C. A. Trugenberger, “A Gauge Theory of Two-dimensional Quantum Gravity,” Phys. Rev. Lett. 63 (1989) 834.
- A. H. Chamseddine and D. Wyler, “Gauge Theory of Topological Gravity in (1+1)-Dimensions,” Phys. Lett. B228 (1989) 75–78.
- R. Jackiw, “Gauge theories for gravity on a line,” Theoretical and Mathematical Physics 92 no. 3, (Sep, 1992) 979–987. http://dx.doi.org/10.1007/BF01017075.
- E. Witten, “On quantum gauge theories in two-dimensions,” Commun. Math. Phys. 141 (1991) 153–209.
- A. A. Migdal, “Recursion Equations in Gauge Theories,” Sov. Phys. JETP 42 (1975) 413.
- E. Witten, “Two-dimensional gauge theories revisited,” J. Geom. Phys. 9 (1992) 303–368, arXiv:hep-th/9204083 [hep-th].
- O. Coussaert, M. Henneaux, and P. van Driel, “The Asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant,” Class. Quant. Grav. 12 (1995) 2961–2966, arXiv:gr-qc/9506019 [gr-qc].
- M. Bershadsky and H. Ooguri, “Hidden SL(n) Symmetry in Conformal Field Theories,” Commun. Math. Phys. 126 (1989) 49.
- A. Blommaert, T. G. Mertens, and H. Verschelde, “Fine Structure of Jackiw-Teitelboim Quantum Gravity,” JHEP 09 (2019) 066, arXiv:1812.00918 [hep-th].
- H. Jacquet, “Fonctions de Whittaker associées aux groupes de Chevalley,” Bull.Soc.Math. France 95 (1967) 243–309.
- G. Schiffmann, “Intégrales d’entrelacement et fonctions de Whittaker,” Bull.Soc.Math. France 99 (1971) 3–72.
- M. Hashizume, “Whittaker models for real reductive groups,” J.Math.Soc. Japan 5 (1979) 394–401.
- M.Hashizume, “Whittaker functions on semisimple Lie groups,” Hiroshima Math.J. 12 (1982) 259–293.
- A. Blommaert, T. G. Mertens, and H. Verschelde, “The Schwarzian Theory - A Wilson Line Perspective,” JHEP 12 (2018) 022, arXiv:1806.07765 [hep-th].
- Y. Fan and T. G. Mertens, “Supergroup structure of Jackiw-Teitelboim supergravity,” JHEP 08 (2022) 002, arXiv:2106.09353 [hep-th].
- H. W. Lin, J. Maldacena, L. Rozenberg, and J. Shan, “Looking at supersymmetric black holes for a very long time,” SciPost Phys. 14 (2023) 128, arXiv:2207.00408 [hep-th].
- Y. Fan and T. G. Mertens, “From quantum groups to Liouville and dilaton quantum gravity,” JHEP 05 (2022) 092, arXiv:2109.07770 [hep-th].
- T. G. Mertens and G. J. Turiaci, “Liouville quantum gravity – holography, JT and matrices,” JHEP 01 (2021) 073, arXiv:2006.07072 [hep-th].
- J. Teschner, “Liouville theory revisited,” Class. Quant. Grav. 18 (2001) R153–R222, arXiv:hep-th/0104158.
- M. Berkooz, P. Narayan, and J. Simon, “Chord diagrams, exact correlators in spin glasses and black hole bulk reconstruction,” JHEP 08 (2018) 192, arXiv:1806.04380 [hep-th].
- M. Berkooz, M. Isachenkov, V. Narovlansky, and G. Torrents, “Towards a full solution of the large N double-scaled SYK model,” JHEP 03 (2019) 079, arXiv:1811.02584 [hep-th].
- H. W. Lin, “The bulk Hilbert space of double scaled SYK,” JHEP 11 (2022) 060, arXiv:2208.07032 [hep-th].
- D. L. Jafferis, D. K. Kolchmeyer, B. Mukhametzhanov, and J. Sonner, “JT gravity with matter, generalized ETH, and Random Matrices,” arXiv:2209.02131 [hep-th].
- A. Goel, V. Narovlansky, and H. Verlinde, “Semiclassical geometry in double-scaled SYK,” arXiv:2301.05732 [hep-th].
- A. Blommaert, T. G. Mertens, and S. Yao, “Dynamical actions and q-representation theory for double-scaled SYK,” arXiv:2306.00941 [hep-th].
- T. G. Mertens, J. Simón, and G. Wong, “A proposal for 3d quantum gravity and its bulk factorization,” arXiv:2210.14196 [hep-th].
- G. Wong, “A note on the bulk interpretation of the Quantum Extremal Surface formula,” arXiv:2212.03193 [hep-th].
- L. D. Faddeev, “Modular double of quantum group,” in Conference Moshe Flato, pp. 149–156. 2000. arXiv:math/9912078.
- B. Ponsot and J. Teschner, “Liouville bootstrap via harmonic analysis on a noncompact quantum group,” arXiv:hep-th/9911110.
- B. Ponsot and J. Teschner, “Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of U(q)(sl(2,R)),” Commun. Math. Phys. 224 (2001) 613–655, arXiv:math/0007097.
- S. Kharchev, D. Lebedev, and M. Semenov-Tian-Shansky, “Unitary representations of U(q) (sl(2, R)), the modular double, and the multiparticle q deformed Toda chains,” Commun. Math. Phys. 225 (2002) 573–609, arXiv:hep-th/0102180.
- A. G. Bytsko and J. Teschner, “R operator, coproduct and Haar measure for the modular double of U(q)(sl(2,R)),” Commun. Math. Phys. 240 (2003) 171–196, arXiv:math/0208191 [math-qa].
- A. G. Bytsko and J. Teschner, “Quantization of models with non-compact quantum group symmetry: Modular XXZ magnet and lattice sinh-Gordon model,” J. Phys. A39 (2006) 12927–12981, arXiv:hep-th/0602093 [hep-th].
- I. Nidaiev and J. Teschner, “On the relation between the modular double of Uq(sl(2,R))subscript𝑈𝑞𝑠𝑙2𝑅U_{q}(sl(2,R))italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_s italic_l ( 2 , italic_R ) ) and the quantum Teichmueller theory,” arXiv:1302.3454 [math-ph].
- J. Teschner and G. S. Vartanov, “Supersymmetric gauge theories, quantization of ℳflatsubscriptℳflat\mathcal{M}_{\mathrm{flat}}caligraphic_M start_POSTSUBSCRIPT roman_flat end_POSTSUBSCRIPT, and conformal field theory,” Adv. Theor. Math. Phys. 19 (2015) 1–135, arXiv:1302.3778 [hep-th].
- I. B. Frenkel and I. C. H. Ip, “Positive representations of split real quantum groups and future perspectives,” arXiv:1111.1033 [math.RT].
- I. C.-H. Ip, “Representation of the quantum plane, its quantum double and harmonic analysis on GLq+(2,R)𝐺superscriptsubscript𝐿𝑞2𝑅GL_{q}^{+}(2,R)italic_G italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( 2 , italic_R ),” Selecta Mathematica New Series Vol 19 (4) (2013) 987–1082, arXiv:1108.5365 [math.QA].
- I. C.-H. Ip, “On tensor product decomposition of positive representations of 𝒰qq~(𝔰𝔩(2,ℝ))subscript𝒰𝑞~𝑞𝔰𝔩2ℝ\mathcal{U}_{q\tilde{q}}(\mathfrak{sl}(2,\mathbb{R}))caligraphic_U start_POSTSUBSCRIPT italic_q over~ start_ARG italic_q end_ARG end_POSTSUBSCRIPT ( fraktur_s fraktur_l ( 2 , blackboard_R ) ),” Letters in Mathematical Physics 111:39 (2021) 1–35, arXiv:1511.07970 [math.RT].
- L. McGough and H. Verlinde, “Bekenstein-Hawking Entropy as Topological Entanglement Entropy,” JHEP 11 (2013) 208, arXiv:1308.2342 [hep-th].
- S. Jackson, L. McGough, and H. Verlinde, “Conformal Bootstrap, Universality and Gravitational Scattering,” Nucl. Phys. B901 (2015) 382–429, arXiv:1412.5205 [hep-th].
- S. Collier, Y. Gobeil, H. Maxfield, and E. Perlmutter, “Quantum Regge Trajectories and the Virasoro Analytic Bootstrap,” JHEP 05 (2019) 212, arXiv:1811.05710 [hep-th].
- L. D. Faddeev, “Discrete Heisenberg-Weyl group and modular group,” Lett. Math. Phys. 34 (1995) 249–254, arXiv:hep-th/9504111.
- M. Blau and G. Thompson, “Derivation of the Verlinde formula from Chern-Simons theory and the G/G model,” Nucl. Phys. B 408 (1993) 345–390, arXiv:hep-th/9305010.
- M. Aganagic, H. Ooguri, N. Saulina, and C. Vafa, “Black holes, q-deformed 2d Yang-Mills, and non-perturbative topological strings,” Nucl. Phys. B 715 (2005) 304–348, arXiv:hep-th/0411280.
- R. J. Szabo and M. Tierz, “q-deformations of two-dimensional Yang-Mills theory: Classification, categorification and refinement,” Nucl. Phys. B 876 (2013) 234–308, arXiv:1305.1580 [hep-th].
- C. Fronsdal and A. Galindo, “The Dual of a quantum group,” Lett. Math. Phys. 27 (1993) 59–72.
- F. Bonechi, E. Celeghini, R. Giachetti, C. M. Perena, E. Sorace, and M. Tarlini, “Exponential mapping for nonsemisimple quantum groups,” J. Phys. A 27 (1994) 1307–1316, arXiv:hep-th/9311114.
- A. Morozov and L. Vinet, “Free field representation of group element for simple quantum groups,” Int. J. Mod. Phys. A 13 (1998) 1651–1708, arXiv:hep-th/9409093.
- R. Jagannathan and J. Van der Jeugt, “Finite dimensional representations of the quantum group GL-p,q(2) using the exponential map from U-p,q(gl(2)),” J. Phys. A 28 (1995) 2819–2832, arXiv:hep-th/9411200.
- J. Van Der Jeugt and R. Jagannathan, “The Exponential map for representations of U(p,q)(gl(2)),” Czech. J. Phys. 46 (1996) 269, arXiv:q-alg/9507009.
- A. Klimyk and K. Schmudgen, Quantum groups and their representations. Springer Berlin, Heidelberg, 1997.
- L. Hadasz, M. Pawelkiewicz, and V. Schomerus, “Self-dual Continuous Series of Representations for Uq𝑞{}_{q}start_FLOATSUBSCRIPT italic_q end_FLOATSUBSCRIPT(sl(2)) and Uq𝑞{}_{q}start_FLOATSUBSCRIPT italic_q end_FLOATSUBSCRIPT(osp(1|2conditional121|21 | 2)),” JHEP 10 (2014) 091, arXiv:1305.4596 [hep-th].
- L. D. Faddeev, “Current - like variables in massive and massless integrable models,” in International School of Physics ’Enrico Fermi’: 127th Course: Quantum Groups and Their Physical Applications, pp. 117–136. 6, 1994. arXiv:hep-th/9408041.
- N. Y. Vilenkin and A. U. Klimyk, Representation of Lie Groups and Special Functions: Volume 1. Kluwer Academic Publishers, 1991.
- A. Gerasimov, S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and M. Olshanetsky, “Liouville type models in group theory framework. 1. Finite dimensional algebras,” Int. J. Mod. Phys. A 12 (1997) 2523–2584, arXiv:hep-th/9601161.
- P. V. Buividovich and M. I. Polikarpov, “Entanglement entropy in gauge theories and the holographic principle for electric strings,” Phys. Lett. B 670 (2008) 141–145, arXiv:0806.3376 [hep-th].
- H. Casini, M. Huerta, and J. A. Rosabal, “Remarks on entanglement entropy for gauge fields,” Phys. Rev. D 89 no. 8, (2014) 085012, arXiv:1312.1183 [hep-th].
- W. Donnelly, “Entanglement entropy and nonabelian gauge symmetry,” Class. Quant. Grav. 31 no. 21, (2014) 214003, arXiv:1406.7304 [hep-th].
- W. Donnelly and L. Freidel, “Local subsystems in gauge theory and gravity,” JHEP 09 (2016) 102, arXiv:1601.04744 [hep-th].
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.