On the Role of the Zero Conditional Mean Assumption for Causal Inference in Linear Models (2211.09502v1)
Abstract: Many econometrics textbooks imply that under mean independence of the regressors and the error term, the OLS parameters have a causal interpretation. We show that even when this assumption is satisfied, OLS might identify a pseudo-parameter that does not have a causal interpretation. Even assuming that the linear model is "structural" creates some ambiguity in what the regression error represents and whether the OLS estimand is causal. This issue applies equally to linear IV and panel data models. To give these estimands a causal interpretation, one needs to impose assumptions on a "causal" model, e.g., using the potential outcome framework. This highlights that causal inference requires causal, and not just stochastic, assumptions.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.