Papers
Topics
Authors
Recent
2000 character limit reached

Designing Robust Transformers using Robust Kernel Density Estimation (2210.05794v3)

Published 11 Oct 2022 in cs.LG, cs.CL, and cs.CV

Abstract: Recent advances in Transformer architectures have empowered their empirical success in a variety of tasks across different domains. However, existing works mainly focus on predictive accuracy and computational cost, without considering other practical issues, such as robustness to contaminated samples. Recent work by Nguyen et al., (2022) has shown that the self-attention mechanism, which is the center of the Transformer architecture, can be viewed as a non-parametric estimator based on kernel density estimation (KDE). This motivates us to leverage a set of robust kernel density estimation methods for alleviating the issue of data contamination. Specifically, we introduce a series of self-attention mechanisms that can be incorporated into different Transformer architectures and discuss the special properties of each method. We then perform extensive empirical studies on language modeling and image classification tasks. Our methods demonstrate robust performance in multiple scenarios while maintaining competitive results on clean datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.